AttributeError:'NoneType'对象没有classifier = nltk.NaiveBayesClassifier.train(training_set)

时间:2017-07-12 07:13:20

标签: machine-learning nlp nltk text-classification naivebayes

我为AttributeError收到此错误:'NoneType'对象没有属性'items。代码如下:

import nltk
import random
from nltk.corpus import movie_reviews
from nltk.classify import NaiveBayesClassifier
from nltk.probability import FreqDist

documents = [ (list(movie_reviews.words(fileid)), category)
            for category in movie_reviews.categories()
                for fileid in movie_reviews.fileids(category)]


random.shuffle(documents)

all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())

all_words =nltk.FreqDist(all_words)

word_features = list(all_words.keys())[:3000]
print (word_features)

def find_features(documents):
    words = set(documents)
    features = {}
    for w in word_features:
        features[w] = (w in words)


featuresets = [(find_features(rev), category) for (rev, category) in 
documents]

training_set = featuresets[:1500]
testing_set = featuresets[1500:]


classifier = nltk.NaiveBayesClassifier.train(training_set)

print ("Naive Bayes Classifier Algo Accuracy: ",nltk.classify.accuracy(classifier, testing_set))*100)

classifier.show_most_informative_features(15)

我一直关注视频教程,那里的代码相同。它运行良好,但在这里它显示以下错误:

AttributeError: 'NoneType' object has no attribute 'items'

为行

  

classifier = nltk.NaiveBayesClassifier.train(training_set)

原因和解决方案是什么?

1 个答案:

答案 0 :(得分:0)

您没有从函数返回列表。在find_feature函数中使用:

def find_features(documents):
    words = set(documents)
    features = {}
    for w in word_features:
        features[w] = (w in words)
    return features #ADD THIS LINE