我目前正在使用线性回归运行TensorFlow模型。但是,我不明白为什么,即使我将learning_rate从0.01减少到0.001并将训练迭代从1000增加到50000,我仍然得到成本函数的'nan'结果,以及两个系数。有人可以帮我解决下面代码中的问题吗?
from __future__ import print_function
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
import random
rng = numpy.random
# Parameters
learning_rate = 0.001
training_epochs = 20000 #number of iterations
display_step = 400
#read csv file
datapath = [directory path]
Ha_Noi = pd.read_csv(datapath+"HaNoi_1month_LW_WeatherTest.csv")
#Add an additional column into the table
sLength = len(Ha_Noi['accept_rate'])
Ha_Noi['accept_rate_timeT'] = pd.Series(Ha_Noi['accept_rate'], index=Ha_Noi.index)
#Shift the entries in the accept_rate column upward
Ha_Noi.accept_rate = Ha_Noi.accept_rate.shift(-1)
Ha_Noi = Ha_Noi.dropna(subset = ["longwait_percent4"])
Ha_Noi = Ha_Noi.dropna(subset=["accept_rate"])
Ha_Noi = Ha_Noi.dropna(subset = ["longwait_percent2"])
df2 = pd.DataFrame(Ha_Noi)
#split the dataset into training and testing sets
train_set, test_set = train_test_split(Ha_Noi, test_size=0.2, random_state = random.randint(20, 200))
Xtrain = train_set['longwait_percent2'].reshape(-1,1)
Ytrain = train_set['accept_rate'].reshape(-1,1)
Xtrain2 = train_set['Weather Weight_Longwait_percent2'].reshape(-1,1)
Xtest2 = test_set['Weather Weight_Longwait_percent2'].reshape(-1,1)
# Xtest = test_set['longwait_percent2'].reshape(-1,1)
# Ytest = test_set['accept_rate'].reshape(-1,1)
# Training Data
train_X = Xtrain
train_Y = Ytrain
n_samples = train_X.shape[0]
#Testing Data
Xtest = np.asarray(test_set['longwait_percent2'])
Ytest = np.asarray(test_set['accept_rate'])
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred = tf.add(tf.multiply(X, W), b)
# Mean squared error
cost = tf.sqrt(tf.reduce_sum(tf.pow(pred-Y, 2))/(n_samples))
# Gradient descent method
# Note, minimize() knows to modify W and b because Variable objects are "trained" (trainable=True by default)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
saver = tf.train.Saver() #save all the initialized data
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0: # checkpoint every 50 epochs
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
testing_cost = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (Xtest.shape[0]),
feed_dict={X: Xtest, Y: Ytest}) # square root of function cost above
print("Root Mean Square Error =", tf.sqrt(testing_cost))
print("Absolute mean square loss difference:", abs(
training_cost - testing_cost))
plt.plot(Xtest, Ytest, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
答案 0 :(得分:1)
没有您的数据,因此很难判断问题是由数据还是由培训问题引起的。你可以让学习率和训练迭代小得多,如0.00005和100,看看还有NaN。