我需要帮助从数据库上运行的tensorflow中获取张量板, 我的代码如下(一切都在datalab上):
import tensorflow as tf
with tf.name_scope('input'):
print ("X_np")
X_np = tf.placeholder(tf.float32, shape=[None, num_of_features],name="input")
with tf.name_scope('weights'):
print ("W is for weights & - 15 number of diseases")
W = tf.Variable(tf.zeros([num_of_features,15]),name="W")
with tf.name_scope('biases'):
print ("b")
#todo:authemate for more diseases
b = tf.Variable(tf.zeros([15]),name="biases")
with tf.name_scope('layer'):
print ("y_train_np")
y_train_np = tf.nn.softmax(tf.matmul(X_np,W) + b)
with tf.name_scope('correct'):
print ("y_ - placeholder for correct answer")
y_ = tf.placeholder(tf.float32, shape=[None, 15],name="correct_answer")
with tf.name_scope('loss'):
print ("cross entrpy")
cross_entropy = -tf.reduce_sum(y_*tf.log(y_train_np))
# % of correct answers found in batch
print("is correct")
is_correct = tf.equal(tf.argmax(y_train_np,1),tf.argmax(y_,1))
print("accuracy")
accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32))
print("train step")
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# train data and get results for batches
print("initialize all varaible")
init = tf.global_variables_initializer()
print("session")
sess = tf.Session()
writer = tf.summary.FileWriter("logs/", sess.graph)
init = tf.global_variables_initializer()
sess.run(init)
!tensorboard --logdir=/logs
输出是: 在端口6006上启动TensorBoard 41 (您可以导航到http://172.17.0.2:6006)
但是,当我点击链接时,网页为空
请让我知道我错过了什么。我期待看到图表。后来我想生成更多数据。任何建议都表示赞赏。
非常感谢!
答案 0 :(得分:7)
如果您使用的是datalab,可以使用如下的tensorboard:
UITextView
http://googledatalab.github.io/pydatalab/google.datalab.ml.html
答案 1 :(得分:1)
您还可以通过在Cloud Shell中输入以下命令来创建具有TensorBoard支持的Cloud AI Platform Notebook实例。然后,您可以根据需要从启动器中启动tensorboard(文件->新启动器-> Tensorboard)
export IMAGE_FAMILY="tf-1-14-cpu"
export ZONE="us-west1-b"
export INSTANCE_NAME="tf-tensorboard-1"
export INSTANCE_TYPE="n1-standard-4"
gcloud compute instances create "${INSTANCE_NAME}" \
--zone="${ZONE}" \
--image-family="${IMAGE_FAMILY}" \
--image-project=deeplearning-platform-release \
--machine-type="${INSTANCE_TYPE}" \
--boot-disk-size=200GB \
--scopes=https://www.googleapis.com/auth/cloud-platform \
--metadata="proxy-mode=project_editors