我有一个评论数据集,我想使用NLP技术处理它。我做了所有预处理阶段(删除停止词,词干等)。我的问题是,有一些词是相互联系的,我的功能并不理解。这是一个例子:
Great services. I had a nicemeal and I love it a lot.
如何从美味到美食更正?
答案 0 :(得分:2)
Peter Norvig为您遇到的分词问题提供了很好的解决方案。长话短说,他使用大量的单词(和bigram)频率数据集和一些动态编程将长串连接的单词分成最可能的分段。
您使用源代码和单词频率下载zip file并根据您的使用情况进行调整。这是完整性的相关位。
def memo(f):
"Memoize function f."
table = {}
def fmemo(*args):
if args not in table:
table[args] = f(*args)
return table[args]
fmemo.memo = table
return fmemo
@memo
def segment(text):
"Return a list of words that is the best segmentation of text."
if not text: return []
candidates = ([first]+segment(rem) for first,rem in splits(text))
return max(candidates, key=Pwords)
def splits(text, L=20):
"Return a list of all possible (first, rem) pairs, len(first)<=L."
return [(text[:i+1], text[i+1:])
for i in range(min(len(text), L))]
def Pwords(words):
"The Naive Bayes probability of a sequence of words."
return product(Pw(w) for w in words)
#### Support functions (p. 224)
def product(nums):
"Return the product of a sequence of numbers."
return reduce(operator.mul, nums, 1)
class Pdist(dict):
"A probability distribution estimated from counts in datafile."
def __init__(self, data=[], N=None, missingfn=None):
for key,count in data:
self[key] = self.get(key, 0) + int(count)
self.N = float(N or sum(self.itervalues()))
self.missingfn = missingfn or (lambda k, N: 1./N)
def __call__(self, key):
if key in self: return self[key]/self.N
else: return self.missingfn(key, self.N)
def datafile(name, sep='\t'):
"Read key,value pairs from file."
for line in file(name):
yield line.split(sep)
def avoid_long_words(key, N):
"Estimate the probability of an unknown word."
return 10./(N * 10**len(key))
N = 1024908267229 ## Number of tokens
Pw = Pdist(datafile('count_1w.txt'), N, avoid_long_words)
你也可以使用segment2
方法,因为它使用双字母并且更准确。