我需要做以下计算:
priors['user_product'] = priors.eval('product_id + user_id*100000')
其中user_product
是我想要生成的新列。
然而,由于先验数据帧很大(确切地说有3000000行),计算需要花费很多时间。
答案 0 :(得分:3)
如果您想要快速,可以使用numpy
或numexpr
或普通pandas
pandas
priors['user_product'] = priors.product_id + 100000 * priors.user_id
numpy
priors['user_product'] = priors.product_id.values + 100000 * priors.user_id.values
numexpr
pid = priors.product_id.values
uid = priors.user_id.values
priors['user_product'] = numexpr.evaluate('pid + 100000 * uid')
计时
n = 3000000
priors = pd.DataFrame(dict(product_id=np.random.rand(n), user_id=np.random.rand(n)))
%timeit priors['user_product'] = priors.eval('product_id + 100000 * user_id')
%timeit priors['user_product'] = priors.product_id.values + 100000 * priors.user_id.values
%timeit priors['user_product'] = priors.product_id + 100000 * priors.user_id
10 loops, best of 3: 31.6 ms per loop
100 loops, best of 3: 17.6 ms per loop
100 loops, best of 3: 18.5 ms per loop
%%timeit
pid = priors.product_id.values
uid = priors.user_id.values
priors['user_product'] = numexpr.evaluate('pid + 100000 * uid')
100 loops, best of 3: 13.6 ms per loop