我正在尝试在SystemlML的DML中构建一个简单的hello world神经网络,但却无法从UDF函数返回多个值。我成功地运行了this code的灵感,但我无法弄清楚它的区别:
按照Berthold的要求编辑(完整代码):
script = """
#
sigmoid = function(matrix[double] z) return (matrix[double] z) {
z = 1/(1+exp(-z))
}
sigmoidPrime = function(matrix[double] z) return (matrix[double] z) {
#Gradient of sigmoid
z = exp(-z)/(1+exp(-z))
}
X=matrix("3 5 5 1 10 2", rows=3, cols=2)
inputLayerSize = 2
outputLayerSize = 1
hiddenLayerSize = 3
W1 = rand(rows=inputLayerSize,cols=hiddenLayerSize)
W2 = rand(rows=hiddenLayerSize,cols=outputLayerSize)
feedForward = function (matrix[double] X,
matrix[double] W1,
matrix[double] W2) return (matrix[double] z3,matrix[double] Y) {
z2 = X %*% W1
a2 = sigmoid(z2)
z3 = (a2 %*% W2)
Y = sigmoid(z3)
}
#feedForward = function (matrix[double] X,
# matrix[double] W1,
# matrix[double] W2) return (matrix[double] z2,matrix[double] z3,matrix[double] Y) {
# z2 = X %*% W1
# a2 = sigmoid(z2)
# z3 = a2 %*% W2
# Y = sigmoid(z3)
# z2,z3,Y
#}
#gradient = function(matrix[double] X,
# matrix[double] W1,
# matrix[double] W2,
# matrix[double] Y) return (matrix[double] Y) {
# #Compute derivative with respect to W and W2 for a given X and y:
# z2,z3,yHat = feedForward(X,W1,W2)
# delta3 = -(Y-yHat) * sigmoidPrime(z3)
# dJdW2 = t(a2) %*% delta3
# delta2 = (delta3 %*% t(W2))*sigmoidPrime(z2)
# dJdW1 = t(X) %*% delta2
# return dJdW1, dJdW2
#}
Yhat=feedForward(X,W1,W2)
nrx = nrow(X)
ncx = ncol(X)
nrw1 = nrow(W1)
ncw1 = ncol(W1)
"""
如果我删除
matrix[double] z3
它有效,否则我得到:
引起:org.apache.sysml.parser.LanguageException:错误:null - 第22行,第0列 - 赋值语句不能返回多个 值
有什么想法吗?
答案 0 :(得分:1)
SystemML确实支持函数中的多个返回值。见http://apache.github.io/systemml/dml-language-reference.html#user-defined-function-udf
下面的Python示例返回2个矩阵。
DMLstr = """
M1M2 = function( matrix[double] M)
return (matrix[double] M1,
matrix[double] M2) {
M1 = M + 1
M2 = M + 2
}
X=matrix("3 5 5 1 10 2", rows=3, cols=2)
[M1, M2] = M1M2 (X)
"""
[M1, M2] = ml.execute(dml(DMLstr).output('M1', 'M2')).get('M1','M2')
print M1.toNumPy()
print M2.toNumPy()
您的代码段未显示“前馈”的调用。你能发帖吗?
答案 1 :(得分:0)
您调用" feedForward"返回输出时不正确。换成这样的东西:
[Yhat1, Yhat2]=feedForward(X,W1,W2)