我尝试将以下代码转换为tensorflow 1.2,但我很难理解如何修复它。感谢您的回复。
out_gt, controller_final_state_gt = tf.nn.dynamic_rnn(
cell=cell_with_ground_truth,
inputs=rnn_inputs_with_ground_truth,
sequence_length=[SEQ_LEN]*BATCH_SIZE,
initial_state=controller_initial_state_gt,
dtype=tf.float32,
swap_memory=True,
time_major=False)
所有输入变量:
cell_with_ground_truth:<__main__.SamplingRNNCell object at 0x7f3f88383250>
rnn_inputs_with_ground_truth:(<tf.Tensor 'dropout/mul:0' shape=(4, 10, 128) dtype=float32>, <tf.Tensor 'div:0' shape=(4, 10, 3) dtype=float32>)
[SEQ_LEN]:[10]
BATCH_SIZE:4
controller_initial_state_gt:(<tf.Tensor 'Identity_3:0' shape=(4, 3) dtype=float32>, LSTMStateTuple(c=<tf.Tensor 'Identity_4:0' shape=(4, 32) dtype=float32>, h=<tf.Tensor 'Identity_5:0' shape=(4, 32) dtype=float32>))
错误Messgae:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-9-1911ca77ee35> in <module>()
53 out_gt, controller_final_state_gt = tf.nn.dynamic_rnn(cell=cell_with_ground_truth, inputs=rnn_inputs_with_ground_truth,
54 sequence_length=[SEQ_LEN]*BATCH_SIZE, initial_state=controller_initial_state_gt, dtype=tf.float32,
---> 55 swap_memory=True, time_major=False)
56
57 with tf.variable_scope("predictor", reuse=True):
/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.pyc in dynamic_rnn(cell, inputs, sequence_length, initial_state, dtype, parallel_iterations, swap_memory, time_major, scope)
572 swap_memory=swap_memory,
573 sequence_length=sequence_length,
--> 574 dtype=dtype)
575
576 # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].
。
/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/tensor_util.pyc in _AssertCompatible(values, dtype)
300 else:
301 raise TypeError("Expected %s, got %s of type '%s' instead." %
--> 302 (dtype.name, repr(mismatch), type(mismatch).__name__))
303
304
TypeError: Expected int32, got list containing Tensors of type '_Message' instead.
答案 0 :(得分:0)
我解决了这个问题。
这是因为cell_with_ground_truth对象来自一个SamplingRNNCell函数
在这里,我发现了一行: context = tf.concat(1,[prev_output,visual_feats]),
对于TF 1.4,它应该像这样修复: context = tf.concat([prev_output,visual_feats],1),
与此solution
相同