我在下面有这个Flink程序:
object WindowedWordCount {
val configFactory = ConfigFactory.load()
def main(args: Array[String]) = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val kafkaStream1 = env.addSource(new FlinkKafkaConsumer010[String](topic1, new SimpleStringSchema(), props))
.assignTimestampsAndWatermarks(new TimestampExtractor)
val kafkaStream2 = env.addSource(new FlinkKafkaConsumer010[String](topic2, new SimpleStringSchema(), props))
.assignTimestampsAndWatermarks(new TimestampExtractor)
val partitionedStream1 = kafkaStream1.keyBy(jsonString => {
extractUserId(jsonString)
})
val partitionedStream2 = kafkaStream2.keyBy(jsonString => {
extractUserId(jsonString)
})
//Is there a way to match the userId from partitionedStream1 and partitionedStream2 in this same pattern?
val patternForMatchingUserId = Pattern.begin[String]("start")
.where(stream1.getUserId() == stream2.getUserId()) //I want to do something like this
//Is there a way to pass in partitionedStream1 and partitionedStream2 to this CEP.pattern function?
val patternStream = CEP.pattern(partitionedStream1, patternForMatchingUserId)
env.execute()
}
}
在上面的flink程序中,我有两个名为partitionedStream1
和partitionedStream2
的流,它们是keyedBy
用户ID。
我想以某种方式比较patternForMatchingUserId
模式中两个流的数据(类似于我上面所示)。有没有办法将两个流传递给CEP.Pattern
函数?
这样的事情:
val patternStream = CEP.pattern(partitionedStream1, partitionedStream2, patternForMatchingUserId)
答案 0 :(得分:2)
您无法将两个流传递给CEP
,但您可以传递合并的流。
如果两个流具有相同的类型/模式。你可以结合他们。我相信这个解决方案符合你的情况。
partitionedStream1.union(partitionedStream2).keyBy(...)
如果他们有不同的架构。您可以使用内部的一些自定义逻辑将它们转换为一个流。 coFlatMap