我正在训练SVM(来自opencv的train_auto)两次。
两次我都使用相同的参数: C = 0.01,1.00000次迭代,32次特征和24550次样本。 但不同的输入样本。我第一次使用我的训练数据,第二次使用较少的训练数据+一些错误的否定,但是与第一步完全相同的训练数据。
第一次训练在约2小时后完成。而第二次运行无穷无尽(超过10小时)。这怎么可能,我该如何解决这个问题?
问候, 斯特芬
编辑一些代码:
void SVMtrain(bool retraining) {
int factor_pos = 5;
int factor_neg = 10;
std::string line;
int N_pos = 2474;
N_pos *= factor_pos;
int N_neg = 0;
std::ifstream myfile2(LIST_NEG);
while (std::getline(myfile2, line))
++N_neg;
N_neg *= factor_neg;
Mat points = createFirstSet(N_pos, N_neg, factor_pos, factor_neg);
Mat labels = createFirstLabels(N_pos, N_neg);
Mat all_neg;
if (retraining) {
Mat hardNegatives = find_hardNegatives();
hardNegatives.copyTo(points(Rect(0, points.rows - (MAX_HARD_NEG+1), hardNegatives.cols, hardNegatives.rows)));
}
// Train with SVM
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.C = 0.01; //best option according to Dalal and Triggs
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, iterations, 1e-6);
CvSVM SVM;
if (retraining) {
cout << "Training SVM with " << points.rows << " Datapoints... (" << N_pos << ", " << points.rows - N_pos << ") since: " << getTimeFormatted()<< endl;
SVM.train_auto(points, labels, Mat(), Mat(), params);
SVM.save(SVM_2_LOCATION);
}
else {
cout << "Training SVM with " << points.rows << " Datapoints... (" << N_pos << ", " << N_neg << ") since: " << getTimeFormatted() << endl;
SVM.train_auto(points, labels, Mat(), Mat(), params);
SVM.save(SVM_LOCATION);
}
cout << "finished training at " << getTimeFormatted() << endl << endl;
}
答案 0 :(得分:3)
这不可能。
但是你提到,对于第二次训练你添加了一些假阴性。虽然我不确切地知道您的数据是什么样的,但我假设,这使得数据不能线性分离。这可能会破坏您的SVM实现。否则我无法帮助你进一步