我有一个整数数组
theIndex = [ 1 2 6 7 17 2]
我有一个数据框,其中包含一个包含整数的列数据集[:id]
dataset = DataFrame(id=[ 1, 1, 2, 2, 3, 3, 3, 4, 4, 4])
我想选择数据集中属于索引的所有观察结果。如果它们在索引中出现两次(或更多),我想选择它们两次(或更多次)
目前,我这样做是愚蠢的。
theIndex = [ 1 2 6 7 17 2]
dataset = DataFrame(id=[ 1, 1, 2, 2, 3, 3, 3, 4, 4, 4])
dataset2 = DataFrame(id=Int64[])
for ii1=1:size(theIndex,2)
for ii2=1:size(dataset[:id],1)
any(i->i.==dataset[ii2,:id],theIndex[ii1]) ?
push!(dataset2,dataset[ii2,:id]) : nothing
end
end
更优雅的解决方案?
答案 0 :(得分:1)
根据我之前的评论,您正在寻找findin
功能。
julia> Ind = findin( dataset[:id], theIndex); # return indices of elements in
# dataset[:id] that occur in
# theIndex
julia> dataset[:id][Ind]
4-element DataArrays.DataArray{Int64,1}:
1
1
2
2
(或者如果您希望将结果以SubDataFrame / view的形式返回到数据集中,则可以执行SubDataFrame(dataset, Ind)
等)
编辑根据评论,为了确保theIndex
中的重复被考虑在内,每个元素的样本需要单独附加:
Ind = []; for i in theIndex; append!(Ind, findin(dataset[:id], i)); end
然后可以使用 Ind
创建一个数组或SubDataFrame,如上所述。
编辑2 :
julia> @time dataset2 = DataFrame(id=Int64[])
for ii1=1:size(theIndex,2)
for ii2=1:size(dataset[:id],1)
any(i->i.==dataset[ii2,:id],theIndex[ii1]) &&
push!(dataset2,dataset[ii2,:id])
end
end
0.000016 seconds (24 allocations: 1.594 KiB)
julia> @time Ind = []; for i in theIndex; append!(Ind, findin(dataset[:id], i)); end
0.000002 seconds (5 allocations: 240 bytes)
(关于全球范围内基准测试的常见警示咆哮)
答案 1 :(得分:1)
基本上,问题是要计算theIndex
和dataset
之间的SQL JOIN。遗憾的是,DataFrames并未在内部完全实现此功能。因此,为此目的,这是一个快速(和有效)的JOIN模拟:
using DataStructures
sort!(dataset, cols=:id]
j = 1
newvec = Vector{Int}()
for (val,cnt) in SortedDict(countmap(theIndex))
while j<=nrow(dataset)
dataset[j,:id] > val && break
dataset[j,:id] == val && append!(newvec,fill(j,cnt))
j += 1
end
end
dataset2 = dataset[newvec,:]
DataStructures包用于SortedDict。这种实现应该比其他多循环方法更有效。