我有一个DataFrame:
>>> df
A
0 foo
1 bar
2 foo
3 baz
4 foo
5 bar
我需要找到所有重复的组并用顺序dgroup_id
标记它们:
>>> df
A dgroup_id
0 foo 1
1 bar 2
2 foo 1
3 baz
4 foo 1
5 bar 2
(这意味着foo
属于第一组重复项,bar
属于第二组重复项,baz
不重复。)
我这样做了:
import pandas as pd
df = pd.DataFrame({'A': ('foo', 'bar', 'foo', 'baz', 'foo', 'bar')})
duplicates = df.groupby('A').size()
duplicates = duplicates[duplicates>1]
# Yes, this is ugly, but I didn't know how to do it otherwise:
duplicates[duplicates.reset_index().index] = duplicates.reset_index().index
df.insert(1, 'dgroup_id', df['A'].map(duplicates))
这导致:
>>> df
A dgroup_id
0 foo 1.0
1 bar 0.0
2 foo 1.0
3 baz NaN
4 foo 1.0
5 bar 0.0
在熊猫中有更简单/更短的方法吗?我读到可能pandas.factorize
可能在这里有所帮助,但我不知道如何使用它...(这个函数的pandas documentation没有帮助)
另外:我既不介意基于0的组计数,也不介意奇怪的排序顺序;但是我希望将dgroup_id
作为整数,而不是浮点数。
答案 0 :(得分:2)
您可以list
制作get_duplicates()
个重复项,然后将dgroup_id
设置为A
的索引
def find_index(string):
if string in duplicates:
return duplicates.index(string)+1
else:
return 0
df = pd.DataFrame({'A': ('foo', 'bar', 'foo', 'baz', 'foo', 'bar')})
duplicates = df.set_index('A').index.get_duplicates()
df['dgroup_id'] = df['A'].apply(find_index)
df
输出:
A dgroup_id 0 foo 2 1 bar 1 2 foo 2 3 baz 0 4 foo 2 5 bar 1
答案 1 :(得分:1)
使用链式操作首先获取每个A的value_count,计算每个组的序列号,然后再连接回原始DF。
(
pd.merge(df,
df.A.value_counts().apply(lambda x: 1 if x>1 else np.nan)
.cumsum().rename('dgroup_id').to_frame(),
left_on='A', right_index=True).sort_index()
)
Out[49]:
A dgroup_id
0 foo 1.0
1 bar 2.0
2 foo 1.0
3 baz NaN
4 foo 1.0
5 bar 2.0
如果您需要Nan用于唯一的组,则不能将int作为数据类型,这是目前的熊猫限制。如果您对唯一组的设置0没问题,则可以执行以下操作:
(
pd.merge(df,
df.A.value_counts().apply(lambda x: 1 if x>1 else np.nan)
.cumsum().rename('dgroup_id').to_frame().fillna(0).astype(int),
left_on='A', right_index=True).sort_index()
)
A dgroup_id
0 foo 1
1 bar 2
2 foo 1
3 baz 0
4 foo 1
5 bar 2
答案 2 :(得分:0)
使用duplicated
标识重复的位置。使用where
将单例替换为''
。使用分类来分解。
dups = df.A.duplicated(keep=False)
df.assign(dgroup_id=df.A.where(dups, '').astype('category').cat.codes)
A dgroup_id
0 foo 2
1 bar 1
2 foo 2
3 baz 0
4 foo 2
5 bar 1
如果您坚持''
dups = df.A.duplicated(keep=False)
df.assign(
dgroup_id=df.A.where(dups, '').astype('category').cat.codes.replace(0, ''))
A dgroup_id
0 foo 2
1 bar 1
2 foo 2
3 baz
4 foo 2
5 bar 1
答案 3 :(得分:0)
你可以去:
import pandas as pd
import numpy as np
df = pd.DataFrame(['foo', 'bar', 'foo', 'baz', 'foo', 'bar',], columns=['name'])
# Create the groups order
ordered_names = df['name'].drop_duplicates().tolist() # ['foo', 'bar', 'baz']
# Find index of each element in the ordered list
df['duplication_index'] = df['name'].apply(lambda x: ordered_names.index(x) + 1)
# Discard non-duplicated entries
df.loc[~df['name'].duplicated(keep=False), 'duplication_index'] = np.nan
print(df)
# name duplication_index
# 0 foo 1.0
# 1 bar 2.0
# 2 foo 1.0
# 3 baz NaN
# 4 foo 1.0
# 5 bar 2.0
答案 4 :(得分:0)
df = pd.DataFrame({'A': ('foo', 'bar', 'foo', 'baz', 'foo', 'bar')})
key_set = set(df['A'])
df_a = pd.DataFrame(list(key_set))
df_a['dgroup_id'] = df_a.index
result = pd.merge(df,df_a,left_on='A',right_on=0,how='left')
In [32]: result.drop(0,axis=1)
Out[32]:
A dgroup_id
0 foo 2
1 bar 0
2 foo 2
3 baz 1
4 foo 2
5 bar 0