使用类型A
的简单归纳定义:
Inductive A: Set := mkA : nat-> A.
(*get ID of A*)
Function getId (a: A) : nat := match a with mkA n => n end.
和子类型定义:
(* filter that test ID of *A* is 0 *)
Function filter (a: A) : bool := if (beq_nat (getId a) 0) then true else false.
(* cast bool to Prop *)
Definition IstrueB (b : bool) : Prop := if b then True else False.
(* subtype of *A* that only interests those who pass the filter *)
Definition subsetA : Set := {a : A | IstrueB (filter a) }.
我尝试使用此代码在A
通过时将subsetA
的元素转换为filter
,但未能方便Coq它是一个有效的构造,用于' sig& #39;类型:
Definition cast (a: A) : option subsetA :=
match (filter a) with
| true => Some (exist _ a (IstrueB (filter a)))
| false => None
end.
错误:
In environment
a : A
The term "IstrueB (filter a)" has type "Prop"
while it is expected to have type "?P a"
(unable to find a well-typed instantiation for "?P": cannot ensure that
"A -> Type" is a subtype of "?X114@{__:=a} -> Prop").
因此,Coq希望得到(IstrueB (filter a))
类型的实际证明,但我提供的是类型Prop
。
你能谈谈如何提供这种类型吗?谢谢。
答案 0 :(得分:3)
首先,有标准is_true
包装器。您可以像这样明确地使用它:
Definition subsetA : Set := {a : A | is_true (filter a) }.
或隐含地使用强制机制:
Coercion is_true : bool >-> Sortclass.
Definition subsetA : Set := { a : A | filter a }.
接下来,filter a
上的非依赖模式数学运算不会将filter a = true
传播到true
分支。您至少有三个选择:
使用策略构建cast
函数:
Definition cast (a: A) : option subsetA.
destruct (filter a) eqn:prf.
- exact (Some (exist _ a prf)).
- exact None.
Defined.
明确使用依赖模式匹配(在Stackoverflow或CDPT中搜索“convoy模式”):
Definition cast' (a: A) : option subsetA :=
match (filter a) as fa return (filter a = fa -> option subsetA) with
| true => fun prf => Some (exist _ a prf)
| false => fun _ => None
end eq_refl.
使用Program
设施:
Require Import Coq.Program.Program.
Program Definition cast'' (a: A) : option subsetA :=
match filter a with
| true => Some (exist _ a _)
| false => None
end.