Python中多元5次多项式回归的曲面图

时间:2017-07-07 01:06:27

标签: python matplotlib scikit-learn non-linear-regression numerical-analysis

我正在用Python实现一篇论文,该论文最初是在MATLAB中实现的。该论文称,使用来自一组采样数据点的曲线拟合发现了五次多项式。我不想使用他们的多项式,所以我开始使用样本数据点(在纸上给出)并尝试使用sklearn多项式特征和linear_model找到5度多项式。因为它是多元方程f(x,y),其中x和y是某个池塘的长度和宽度,f是污染物的初始浓度。

所以我的问题是sklearn多项式特征将测试和训练数据点转换为n个多项式点(据我所知,我认为)。但是当我需要 clf.predict 函数(其中clf是经过训练的模型)时只取x和y值,因为当我从Matplotlib绘制表面图时,它需要meshgrid,所以当我meshgrid我的sklean变换的测试点,它的形状变得像NxN,而预测函数需要Nxn(其中n是转换数据的多项式的度数),N是行数。

有没有可能的方法来绘制此多项式的网格点?

纸质链接:http://www.ajer.org/papers/v5(11)/A05110105.pdf 文章:基于二维空间的兼性污水稳定池生物需氧量数学模型 平流 - 扩散模型

如果可能,请查看论文中的图5和图6(上面的链接)。这就是我想要实现的目标。

谢谢 enter code here

from math import exp
import numpy as np
from operator import itemgetter
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter

fig = plt.figure()
ax = fig.gca(projection='3d')


def model_BOD (cn):
    cnp1 = []
    n = len(cn)
    # variables:
    dmx = 1e-5
    dmy = 1e-5
    u = 2.10e-4
    v = 2.10e-4
    obs_time = 100
    dt = 0.1

    for t in np.arange(0.1,obs_time,dt):
        for i in range(N):
            for j in range(N):
                d = j + (i-1)*N
                dxp1 = d  + N
                dyp1 = d + 1
                dxm1 = d - N
                dym1 = d - 1

                cnp1.append(t*(((-2*dmx/dx**2)+(-2*dmy/dy**2)+(1/t))*cn[dxp1] + (dmx/dx**2)*cn[dyp1] \
                                + (dmy/dy**2)*cn[dym1] - (u/(2*dx))*cn[dxp1] + (u/(2*dx))*cn[dxm1] \
                                - (v/(2*dy))*cn[dyp1] + (v/(2*dy))*cn[dym1]))
        cn = cnp1
        cnp1 = []
    return cn

N = 20
Length = 70
Width = 77
dx = Length/N
dy = Width/N

deg_of_poly = 5

datapoints = np.array([
    [12.5,70,81.32],[25,70,88.54],[37.5,70,67.58],[50,70,55.32],[62.5,70,56.84],[77,70,49.52],
    [0,11.5,71.32],[77,57.5,67.20],
    [0,23,58.54],[25,46,51.32],[37.5,46,49.52],
    [0,34.5,63.22],[25,34.5,48.32],[37.5,34.5,82.30],[50,34.5,56.42],[77,34.5,48.32],[37.5,23,67.32],
    [0,46,64.20],[77,11.5,41.89],[77,46,55.54],[77,23,52.22],
    [0,57.5,93.72],
    [0,70,98.20],[77,0,42.32]
    ])

X = datapoints[:,0:2]
Y = datapoints[:,-1]

predict_x = []
predict_y = []
for i in np.linspace(0,Width,N):
    for j in np.linspace(0,Length,N):
        predict_x.append([i,j])

predict = np.array(predict_x)

poly = PolynomialFeatures(degree=deg_of_poly)
X_ = poly.fit_transform(X)

predict_ = poly.fit_transform(predict)
clf = linear_model.LinearRegression()
clf.fit(X_, Y)
prediction = []

for k,i in enumerate(predict_):
    prediction.append(clf.predict(np.array([i]))[0])

prediction_ = model_BOD(prediction)
print prediction_
XX = []
XX = predict[:,0]
YY = []
YY = predict[:,-1]
XX,YY = np.meshgrid(X,Y)
Z = prediction
##R = np.sqrt(XX**2+YY**2)
##Z = np.tan(R)

surf = ax.plot_surface(XX,YY,Z)
plt.show()

1 个答案:

答案 0 :(得分:1)

如果我理解正确,这里的关键逻辑是从网格网格生成多项式特征,进行预测并使用原始网格网格绘制预测。希望以下内容能够满足您的需求:

import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model

# The training set
datapoints = np.array([
    [12.5,70,81.32], [25,70,88.54], [37.5,70,67.58], [50,70,55.32], 
    [62.5,70,56.84], [77,70,49.52], [0,11.5,71.32], [77,57.5,67.20], 
    [0,23,58.54], [25,46,51.32], [37.5,46,49.52], [0,34.5,63.22], 
    [25,34.5,48.32], [37.5,34.5,82.30], [50,34.5,56.42], [77,34.5,48.32], 
    [37.5,23,67.32], [0,46,64.20], [77,11.5,41.89], [77,46,55.54], 
    [77,23,52.22], [0,57.5,93.72], [0,70,98.20], [77,0,42.32]
    ])
X = datapoints[:,0:2]
Y = datapoints[:,-1]
# 5 degree polynomial features
deg_of_poly = 5
poly = PolynomialFeatures(degree=deg_of_poly)
X_ = poly.fit_transform(X)
# Fit linear model
clf = linear_model.LinearRegression()
clf.fit(X_, Y)

# The test set, or plotting set
N = 20
Length = 70
predict_x0, predict_x1 = np.meshgrid(np.linspace(0, Length, N), 
                                     np.linspace(0, Length, N))
predict_x = np.concatenate((predict_x0.reshape(-1, 1), 
                            predict_x1.reshape(-1, 1)), 
                           axis=1)
predict_x_ = poly.fit_transform(predict_x)
predict_y = clf.predict(predict_x_)

# Plot
fig = plt.figure(figsize=(16, 6))
ax1 = fig.add_subplot(121, projection='3d')
surf = ax1.plot_surface(predict_x0, predict_x1, predict_y.reshape(predict_x0.shape), 
                        rstride=1, cstride=1, cmap=cm.jet, alpha=0.5)
ax1.scatter(datapoints[:, 0], datapoints[:, 1], datapoints[:, 2], c='b', marker='o')

ax1.set_xlim((70, 0))
ax1.set_ylim((0, 70))
fig.colorbar(surf, ax=ax1)
ax2 = fig.add_subplot(122)
cs = ax2.contourf(predict_x0, predict_x1, predict_y.reshape(predict_x0.shape))
ax2.contour(cs, colors='k')
fig.colorbar(cs, ax=ax2)
plt.show()

enter image description here