我正在尝试使用来自spark数据帧的数据作为我的k-means模型的输入。但是我一直都会遇到错误。 (检查代码后的部分)
我的火花数据框看起来像这样(并且有大约1M行):
ID col1 col2 Latitude Longitude
13 ... ... 22.2 13.5
62 ... ... 21.4 13.8
24 ... ... 21.8 14.1
71 ... ... 28.9 18.0
... ... ... .... ....
这是我的代码:
from pyspark.ml.clustering import KMeans
from pyspark.ml.linalg import Vectors
df = spark.read.csv("file.csv")
spark_rdd = df.rdd.map(lambda row: (row["ID"], Vectors.dense(row["Latitude"],row["Longitude"])))
feature_df = spark_rdd.toDF(["ID", "features"])
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(feature_df)
sum_of_square_error = model.computeCost(feature_df)
print str(sum_of_square_error)
centers = model.clusterCenters()
for center in centers:
print(center)
然而,我收到错误:
Py4JJavaError Traceback (most recent call last)
<ipython-input-145-f50a6cbe7243> in <module>()
7
8 kmeans = KMeans().setK(2).setSeed(1)
----> 9 model = kmeans.fit(feature_df)
10
11
~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/base.py in fit(self, dataset, params)
62 return self.copy(params)._fit(dataset)
63 else:
---> 64 return self._fit(dataset)
65 else:
66 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/wrapper.py in _fit(self, dataset)
234
235 def _fit(self, dataset):
--> 236 java_model = self._fit_java(dataset)
237 return self._create_model(java_model)
238
~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/wrapper.py in _fit_java(self, dataset)
231 """
232 self._transfer_params_to_java()
--> 233 return self._java_obj.fit(dataset._jdf)
234
235 def _fit(self, dataset):
/usr/local/lib/python2.7/dist-packages/py4j/java_gateway.pyc in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/local/lib/python2.7/dist-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling o3552.fit.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 457.0 failed 4 times, most recent failure: Lost task 5.3 in stage 457.0 (TID 2308, 10.3.1.31, executor 1): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/worker.py", line 174, in main
process()
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/worker.py", line 169, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/serializers.py", line 268, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "<ipython-input-145-f50a6cbe7243>", line 4, in <lambda>
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/linalg/__init__.py", line 790, in dense
return DenseVector(elements)
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/linalg/__init__.py", line 275, in __init__
ar = np.array(ar, dtype=np.float64)
ValueError: could not convert string to float: GOLF
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:156)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:152)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:215)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:957)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:948)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:888)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:948)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:694)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
at org.apache.spark.rdd.RDD.count(RDD.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$takeSample$1.apply(RDD.scala:567)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.takeSample(RDD.scala:556)
at org.apache.spark.mllib.clustering.KMeans.initKMeansParallel(KMeans.scala:353)
at org.apache.spark.mllib.clustering.KMeans.runAlgorithm(KMeans.scala:256)
at org.apache.spark.mllib.clustering.KMeans.run(KMeans.scala:227)
at org.apache.spark.ml.clustering.KMeans.fit(KMeans.scala:319)
at sun.reflect.GeneratedMethodAccessor89.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/worker.py", line 174, in main
process()
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/worker.py", line 169, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/serializers.py", line 268, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "<ipython-input-145-f50a6cbe7243>", line 4, in <lambda>
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/linalg/__init__.py", line 790, in dense
return DenseVector(elements)
File "~/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/ml/linalg/__init__.py", line 275, in __init__
ar = np.array(ar, dtype=np.float64)
ValueError: could not convert string to float: GOLFE
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:156)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:152)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:215)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:957)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:948)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:888)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:948)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:694)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
奇怪的是,每次运行它时错误都不同。我得到的3种错误是:
UnicodeEncodeError: 'decimal' codec can't encode characters in position 3-5: invalid decimal Unicode string
invalid literal for float(): 2017-04
ValueError: could not convert string to float: GOLF
如果我错了,请纠正我,但我认为列中的某些数据值可能不正确(例如,纬度和经度列中的偶尔字符串)
有没有办法检查“纬度”每行中的值是否实际上是浮点数?有没有办法检查'ID'每行中的值是否为整数?
我想丢弃包含不正确数据类型值的行。也许有一种方法可以使用df.filter()
吗?
我非常感谢任何帮助。感谢。
更新:我甚至试过df.describe('ID', 'Latitude', 'Longitude').show()
并返回每列的count,mean,stddev,min,max值的数值,向我表明它们都必须是数字..?
答案 0 :(得分:0)
你应该继续在同一个帖子上,因为它是同样的问题。供参考:Preprocessing data in pyspark
在这里,您需要将Latitude
/ Longitude
转换为float并使用dropna
删除空值,然后才能在Kmean中注入数据,因为这些列似乎包含一些无法转换的字符串到一个数值,所以预处理df
有类似的东西:
df2 = (df
.withColumn("Latitude", col("Latitude").cast("float"))
.withColumn("Longitude", col("Longitude").cast("float"))
.dropna()
)
spark_rdd = df2.rdd ...