假设一个包含1000行的数据帧。每行代表一个时间序列。
然后我构建了一个DTW算法来计算2行之间的距离。
我不知道接下来要做什么来为数据帧完成无监督的分类任务。
如何标记数据框的所有行?
答案 0 :(得分:7)
解释
KNN算法 = K-最近邻分类算法
K-means =基于质心的聚类算法
DTW =动态时间扭曲时间序列的相似性度量算法
我将逐步介绍如何构建两个时间序列以及如何计算动态时间扭曲(DTW)算法。您可以使用scikit-learn构建无监督的k-means聚类,而无需指定质心数,然后scikit-learn知道使用名为auto
的算法。
您有两个时间序列,您可以计算DTW
import pandas as pd
import numpy as np
import random
from dtw import dtw
from matplotlib.pyplot import plot
from matplotlib.pyplot import imshow
from matplotlib.pyplot import cm
from sklearn.cluster import KMeans
from sklearn.preprocessing import MultiLabelBinarizer
#About classification, read the tutorial
#http://scikit-learn.org/stable/tutorial/basic/tutorial.html
def createTs(myStart, myLength):
index = pd.date_range(myStart, periods=myLength, freq='H');
values= [random.random() for _ in range(myLength)];
series = pd.Series(values, index=index);
return(series)
#Time series of length 30, start from 1/1/2000 & 1/2/2000 so overlap
myStart='1/1/2000'
myLength=30
timeS1=createTs(myStart, myLength)
myStart='1/2/2000'
timeS2=createTs(myStart, myLength)
#This could be your dataframe but unnecessary here
#myDF = pd.DataFrame([x for x in timeS1.data], [x for x in timeS2.data])#, columns=['data1', 'data2'])
x=[xxx*100 for xxx in sorted(timeS1.data)]
y=[xx for xx in timeS2.data]
choice="dtw"
if (choice="timeseries"):
print(timeS1)
print(timeS2)
if (choice=="drawingPlots"):
plot(x)
plot(y)
if (choice=="dtw"):
#DTW with the 1st order norm
myDiff=[xx-yy for xx,yy in zip(x,y)]
dist, cost, acc, path = dtw(x, y, dist=lambda x, y: np.linalg.norm(myDiff, ord=1))
imshow(acc.T, origin='lower', cmap=cm.gray, interpolation='nearest')
plot(path[0], path[1], 'w')
关于应该贴上什么标签以及使用哪些标签的问题并不明显?所以请提供以下详细信息
之后我们可以决定我们的分类算法,也就是所谓的KNN算法。它的工作原理是你有两个独立的数据集:训练集和测试集。通过训练集,您可以教算法标记时间序列,而测试集是一个工具,通过该工具我们可以测量模型与模型选择工具(如AUC)的工作情况。
小谜题保持开放,直到提供有关问题的详细信息
#PUZZLE
#from tutorial (#http://scikit-learn.org/stable/tutorial/basic/tutorial.html)
newX = [[1, 2], [2, 4], [4, 5], [3, 2], [3, 1]]
newY = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]]
newY = MultiLabelBinarizer().fit_transform(newY)
#Continue to the article.
关于分类器的Scikit-learn比较文章在下面的第二个枚举项中提供。
K-means是聚类算法,你可以使用它的无监督版本
#Unsupervised version "auto" of the KMeans as no assignment for the n_clusters
myClusters=KMeans(path)
#myClusters.fit(YourDataHere)
这是与KNN算法非常不同的算法:这里我们不需要任何标签。我在第一个枚举项目中为您提供了有关此主题的更多材料。
scikit中分类器的比较了解here
答案 1 :(得分:1)
您可以使用DTW。实际上,我的一个项目遇到了同样的问题,并且我用Python编写了自己的类。
这是逻辑;
n! / k! / (n-k)!
。这些就像潜在的中心。还有代码;
import numpy as np
import pandas as pd
from itertools import combinations
import time
def dtw_distance(x, y, d=lambda x,y: abs(x-y), scaled=False, fill=True):
"""Finds the distance of two arrays by dynamic time warping method
source: https://en.wikipedia.org/wiki/Dynamic_time_warping
Dependencies:
import numpy as np
Args:
x, y: arrays
d: distance function, default is absolute difference
scaled: boolean, should arrays be scaled before calculation
fill: boolean, should NA values be filled with 0
returns:
distance as float, 0.0 means series are exactly same, upper limit is infinite
"""
if fill:
x = np.nan_to_num(x)
y = np.nan_to_num(y)
if scaled:
x = array_scaler(x)
y = array_scaler(y)
n = len(x) + 1
m = len(y) + 1
DTW = np.zeros((n, m))
DTW[:, 0] = float('Inf')
DTW[0, :] = float('Inf')
DTW[0, 0] = 0
for i in range(1, n):
for j in range(1, m):
cost = d(x[i-1], y[j-1])
DTW[i, j] = cost + min(DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])
return DTW[n-1, m-1]
def array_scaler(x):
"""Scales array to 0-1
Dependencies:
import numpy as np
Args:
x: mutable iterable array of float
returns:
scaled x
"""
arr_min = min(x)
x = np.array(x) - float(arr_min)
arr_max = max(x)
x = x/float(arr_max)
return x
class TrendCluster():
def __init__(self):
self.clusters = None
self.centers = None
self.scale = None
def fit(self, series, n=2, scale=True):
'''
Work-flow
1 - make series combination with size n, initial clusters
2 - assign closest series to each cluster
3 - calculate total distance for each combinations
4 - choose the minimum
Args:
series: dict, keys can be anything, values are time series as list, assumes no nulls
n: int, cluster size
scale: bool, if scale needed
'''
assert isinstance(series, dict) and isinstance(n, int) and isinstance(scale, bool), 'wrong argument type'
assert n < len(series.keys()), 'n is too big'
assert len(set([len(s) for s in series.values()])) == 1, 'series length not same'
self.scale = scale
combs = combinations(series.keys(), n)
combs = [[c, -1] for c in combs]
series_keys = pd.Series(series.keys())
dtw_matrix = pd.DataFrame(series_keys.apply(lambda x: series_keys.apply(lambda y: dtw_distance(series[x], series[y], scaled=scale))))
dtw_matrix.columns, dtw_matrix.index = series_keys, series_keys
for c in combs:
c[1] = dtw_matrix.loc[c[0], :].min(axis=0).sum()
combs.sort(key=lambda x: x[1])
self.centers = {c:series[c] for c in combs[0][0]}
self.clusters = {c:[] for c in self.centers.keys()}
for k, _ in series.items():
tmp = [[c, dtw_matrix.loc[k, c]] for c in self.centers.keys()]
tmp.sort(key=lambda x: x[1])
cluster = tmp[0][0]
self.clusters[cluster].append(k)
return None
def assign(self, serie, save=False):
'''
Assigns the serie to appropriate cluster
Args:
serie, dict: 1 element dict
save, bool: if new serie is stored to clusters
Return:
str, assigned cluster key
'''
assert isinstance(serie, dict) and isinstance(save, bool), 'wrong argument type'
assert len(serie) == 1, 'serie\'s length is not exactly 1'
tmp = [[c, dtw_distance(serie.values()[0], self.centers[c], scaled=self.scale)] for c in self.centers.keys()]
tmp.sort(key=lambda x: x[1])
cluster = tmp[0][0]
if save:
self.clusters[cluster].append(serie.keys()[0])
return cluster
如果您希望在实际操作中看到它,可以参考我的存储库中的Time Series Clustering。