通过以下代码
,我的数据集看起来像这样+------+---------------+----+
| City| Timestamp|Sale|
+------+---------------+----+
|City 3|6/30/2017 16:04| 28|
|City 4| 7/4/2017 16:04| 12|
|City 2|7/13/2017 16:04| 8|
|City 4|7/16/2017 16:04| 21|
|City 4| 7/3/2017 16:04| 24|
|City 2|7/17/2017 16:04| 34|
|City 3| 7/9/2017 16:04| 13|
|City 3|7/18/2017 16:04| 26|
|City 3| 7/6/2017 16:04| 16|
|City 3|7/15/2017 16:04| 29|
|City 4|7/18/2017 16:04| 39|
|City 2| 7/1/2017 16:04| 19|
|City 2|7/18/2017 16:04| 19|
|City 4| 7/4/2017 16:04| 24|
|City 2| 7/4/2017 16:04| 9|
|City 4|7/15/2017 16:04| 20|
|City 3|7/12/2017 16:04| 19|
|City 1| 7/9/2017 16:04| 13|
|City 1|7/13/2017 16:04| 25|
|City 4|7/10/2017 16:04| 10|
+------+---------------+----+
我们需要计算每周Sale
的{{1}}总和。
答案 0 :(得分:0)
您可以按City
和Time stamp
分组并汇总Sales
data.groupBy("City", "TimeStamp").agg(sum(col("Sale")).as("TotalSale")).show
希望这有帮助!