我是tensorflow的新手,我跟随sentdex的教程。 无论我解决了多少语法问题,我都会遇到同样的错误。
ValueError: Shape must be rank 1 but is rank 0 for
'random_normal_7/RandomStandardNormal' (op: 'RandomStandardNormal')
with input shapes: []
我相信问题就在这里,但我不知道如何解决它。
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
n_nodes_hl1])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1,
n_nodes_hl2])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,
n_nodes_hl3])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
n_classes])),
'biases': tf.Variable(tf.random_normal(n_classes))}
我的整个代码是
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/ data/", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
n_nodes_hl1])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1,
n_nodes_hl2])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,
n_nodes_hl3])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
n_classes])),
'biases': tf.Variable(tf.random_normal(n_classes))}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) +
output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x,
y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:',
epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x: mnist.test.images, y:
mnist.test.labels}))
train_neural_network(x)
答案 0 :(得分:0)
tf.random_normal()
的第一个参数(shape
)必须是一维张量或整数列表,表示随机张量的每个维度的长度。假设n_classes
是一个整数,将tf.random_normal(n_classes)
替换为tf.random_normal([n_classes])
可以解决错误。
答案 1 :(得分:0)
您必须建立从第1层到第2层的连接,就像您将数据传递到所有层而不连接它们一样, 您的代码
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) +
output_layer['biases']
更正的代码:
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) +
output_layer['biases']