我正在尝试使用OpenCL创建一个区域groiwing算法,因为我将使用OpenCV打开一个图像。问题是如何将数据转换为OpenCL。
我在visual studio中使用opencv版本:2.4.9和opencl:AMD APP SDK \ 2.9-1
在使用opencv打开图像后,有人会告诉我该怎么办
答案 0 :(得分:0)
通常,有两种方法可以将图像(或任何其他数据)从主机程序传输到OpenCL应用程序中的设备程序:1 - 使用缓冲区2-使用Image2d。
它们都使用cl_mem
类型。因为使用缓冲区比使用image2d更简单(特别是在灰度图像中),我将解释如何使用OpenCL中的缓冲区将图像从宿主程序传输到设备。
通过openCV对象Mat
读取输入图像后,将其转换为灰度图像。然后,我们使用返回clCreateBuffer
缓冲区的方法cl_mem
。我们可以简单地将data
(Mat
obeject的属性)传递给clCreateBuffer
,以通过输入图像数据初始化输入内核缓冲区。然后我们可以使用clSetKernelArg
方法将创建的缓冲区传输到内核。最后,当内核完成其工作时,我们可以通过clEnqueueReadBuffer
读取结果。
阅读评论以了解此代码,并毫不犹豫地提出问题。
主机代码:
// Make Contex, Kerenl and other requirements for OpenCL before this section....
Mat image = imread("logo.bmp", CV_LOAD_IMAGE_COLOR); // reading input image by opencv to Mat type
Mat input_;
cvtColor(image, input_, CV_BGR2GRAY); // convert input image to gray scale
cl_mem inputSignalBuffer = clCreateBuffer(
context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
input_.rows * input_.cols * input_.elemSize(),
static_cast<void *>(input_.data), // inputSignalBuffers will be initialized by input_.data which contains input image data
&errNum);
cl_mem outputSignalBuffer = clCreateBuffer( // make and preparing an empty output buffer to use after opencl kernel call back
context,
CL_MEM_WRITE_ONLY,
input_.rows * input_.cols * input_.elemSize(),
NULL,
&errNum);
checkErr(errNum, "clCreateBuffer(outputSignal)");
errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputSignalBuffer); // passing input buffer and output buffer to kernel in order to be used on device
errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &maskBuffer);
errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &outputSignalBuffer);
errNum |= clSetKernelArg(kernel, 3, sizeof(cl_uint), &input_.rows);
errNum |= clSetKernelArg(kernel, 4, sizeof(cl_uint), &input_.cols);
errNum |= clSetKernelArg(kernel, 5, sizeof(cl_uint), &maskWidth);
size_t localWorkSize[2] = { 16, 16 }; // Using 2 dimensional range with size of work group 16
size_t globalWorkSize[2] = { input_.rows, // Note: Global work size (input image rows and cols) should be multiple of size of work group.
input_.cols };
// Queue the kernel up for execution across the array
errNum = clEnqueueNDRangeKernel( // enqueue kernel with enabling host blocking until finishing kernel execution
queue,
kernel,
2,
NULL,
globalWorkSize,
localWorkSize,
0,
NULL,
NULL);
checkErr(errNum, "clEnqueueNDRangeKernel");
Mat output_ = cv::Mat(input_.rows, input_.cols, CV_8UC1);
errNum = clEnqueueReadBuffer( // reading from ourput parameter of kernel
queue,
outputSignalBuffer,
CL_TRUE,
0,
input_.rows * input_.cols * input_.elemSize(),
output_.data, //initialize OpenCV Mat by output_.data which contains output results of kernel
0,
NULL,
NULL);
checkErr(errNum, "clEnqueueReadBuffer");
// cut the extra border spaces which has been added in the first part of the code in order to adjust image size with Work Group Size;
cv::imwrite("output.bmp",output_); // saving output in image file
内核代码:
__kernel void convolve(
const __global uchar * const input,
__constant uint * const mask,
__global uchar * const output,
const int inputHeight,
const int inputWidth,
const int maskWidth)
{
uint sum = 0;
const int curr_x = get_global_id(0); // current curr_x (row)
const int curr_y = get_global_id(1); // current curr_y (col)
int d = maskWidth/2;
if(curr_x>d-1 && curr_y>d-1 && curr_x<inputHeight-d && curr_y<inputWidth-d) // checking mask borders not to be out of input matrix
for(int i=-d; i<=d; i++)
for(int j=-d; j<=d; j++) {
int mask_ptr = maskWidth*(i+d)+(j+d); //you can also use mad24(maskWidth, i+d, j+d) which is faster.
sum += input[(curr_x+i)*inputWidth+curr_y+j]*mask[mask_ptr];
}
sum /= (maskWidth*maskWidth); // miangin gereftan
sum = clamp( sum, (uint)0, (uint)255);// clamp == min(max(x, minval), maxval)
output[curr_x*inputWidth+curr_y] = sum;
}