平均断言测试

时间:2017-07-03 22:26:24

标签: javascript function

我正在研究一个用于编写工作实现的骨架。

我不能在骨架中留下任何未使用的功能。测试实施是否有效。

具体来说 - 如果我测试它,应该只需按下[Run]按钮并查看令人信服的证据证明您的代码有效,原因如下:

a)您的测试显示的分类推理
b)控制台日志中输出的行表示来自那些测试的“通过”

到目前为止,这是我的代码:

kri3 <- function(var, lat, lon, defx, defy){

  #making a data frame out of the given vectors
  spdf <- data.frame(var,lat,lon)

  #makeing spatial point data frame coords
  sp::coordinates(spdf) <- ~ lon + lat
  bbox <- sp::bbox(spdf)

  #variogram stuff
  lzn.vgm <- gstat::variogram(var ~ 1, spdf)

  lzn.fit1 <- gstat::fit.variogram(lzn.vgm, model = gstat::vgm(1, "Sph", 900, 1))

  lzn.fit = automap::autofitVariogram(var ~ 1,
                                      spdf,
                                      model = c("Sph"),
                                      kappa = c(0.05, seq(0.2, 2, 0.1), 5, 10),
                                      fix.values = c(NA, NA, NA),
                                      start_vals = c(NA,NA,NA),
                                      verbose = T)

  #making our grid
  cs <- c(defx, defy)
  bb <- sp::bbox(spdf)
  cc <- bb[,1] + (cs/2)
  cd <- ceiling(diff(t(bb))/cs)
  gold_grd <- sp::GridTopology(cellcentre.offset = cc, cellsize = cs, cells.dim = cd)
  gold_grd
  p4s <- sp::CRS(sp::proj4string(spdf))
  gold_sg <- sp::SpatialGrid(gold_grd, proj4string = p4s)
  summary(gold_sg)

  #kringing and auto kriging
  lzn.kriged <- as.data.frame(gstat::krige(var ~ 1, spdf, gold_sg , model=lzn.fit1))
  lzn.Akriged <- automap::autoKrige(var ~ 1, spdf, gold_sg)

  lzn.Akriged.pred <- lzn.Akriged$krige_output$var1.pred
  lzn.Akriged.var <- lzn.Akriged$krige_output$var1.var

  return(lzn.kriged)
  return(lzn.Akriged.var)
  return(lzn.Akriged.pred)

}

kriw <- kri3(new_river$E_coli, new_river$lat2, new_river$lon2, 0.005, 0.005)

Kmap <-  function(lat, lon, kriw){

  #making a dataframe for ggplot
  kriw <- as.data.frame(kriw)

  #making a maps
  bbox1 <- ggmap::make_bbox(lon, lat, f = 1.4)
  map <- ggmap::get_map(bbox1)

  #making a heat map
  M1 <- ggmap::ggmap(map) + 
    ggplot2::geom_tile(data = kriw, ggplot2::aes(x = lon,
                                    y = lat, alpha = var1.pred), fill = "red")

  M2 <- ggmap::ggmap(map) + 
    ggplot2::geom_tile(data = kriw, ggplot2::aes(x = lon, 
                                    y = lat, alpha = var1.var), fill = "red")
  #Placing both heat maps together
  heat <- gridExtra::grid.arrange(M1,M2, ncol=2)

  return(heat)

}

Kmap(new_river$lat2, new_river$lon2, kriw)

知道我错过了什么吗?这一切都正确吗?

1 个答案:

答案 0 :(得分:1)

您的函数不返回任何值,只需添加如下所示的return语句:

function average(numbers) {
 // process array of numbers
  return numbers.reduce(function(total, item){ 
    return total + item / numbers.length - 1; 
  }, 0); 
}


function sum(numbers) { 
  return numbers.reduce(function(total, item){ 
    return total + item;
  }, 0); 
}