我正在使用数据集房价:高级回归技术,其中包括多个因子变量,这些变量在其级别中具有NA。考虑PoolQL,Alley和MiscFeatures列。我想在一个函数中用NA
替换所有这些None
,但我没有这样做。到目前为止试过这个:
MissingLevels <- function(x){
for(i in names(x)){
levels <- levels(x[i])
levels[length(levels) + 1] <- 'None'
x[i] <- factor(x[i], levels = levels)
x[i][is.na(x[i])] <- 'None'
return(x)
}
}
MissingLevels(df[,c('Alley', 'Fence')])
apply(df[,c('Alley', 'Fence')], 2, MissingLevels)
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
答案 0 :(得分:2)
有几种方法,例如:
env_vars
选项1:使用x <- data.frame(another = 1:3, Alley = c("A", "B", NA), Fence = c("C", NA, NA))
包
forcats
选项2:
x[,c("Alley", "Fence")] <- lapply(x[,c("Alley", "Fence")], fct_explicit_na, na_level = "None")
another Alley Fence
1 1 A C
2 2 B None
3 3 None None
PS:第二个答案的灵感来自@G。格洛腾迪克发表replace <NA> in a factor column in R