我一直在为实验室的工作站自动化编写程序。我传达的一种仪器称为光束分析仪,它基本上从两个正交方向(x,y)读取光输入。一旦读取输入,我需要将其转换为2D图像,因为我使用numpy meshgrid
并且我能够获得我想要的输出。
为了更清晰,请参见下图。 x轴和y轴上的两条高斯线是我的原始输入,彩色图是用meshgrid处理后的。
为此,我将软件分为两部分。首先,我创建另一个QT线程,初始化我的设备并在循环中运行获取数据并处理它。然后,该线程向主线程发送一个带有值的信号。
在主线程中,我获取值,绘制图形并更新gui屏幕。
它已经在工作,问题是当我启动光束分析仪读数时,随着时间的推移软件开始变慢。起初我以为是因为数据处理,但它没有意义,因为它在第二个线程中运行,当我启动设备时没有延迟。
好像它是"拯救"内存中的数据越来越慢,这很奇怪,因为我使用set_data
和draw
方法进行绘图。
注意:如果我关闭软件内部的设备读数,滞后停止,如果我再次启动,它会开始变好但随着时间的推移会滞后。
非常感谢任何传入的帮助!
数据采集线程代码:
class ThreadGraph(QtCore.QThread):
_signalValues = QtCore.pyqtSignal(float, float, float, float, float, float, float, float)
_signalGraph = QtCore.pyqtSignal(np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray)
_signalError = QtCore.pyqtSignal(str)
BEAMstatus = QtCore.pyqtSignal(str)
def __init__(self, parent=None):
super(ThreadGraph, self).__init__(parent)
self.slit = 0
self.state = False
#Thread starts
def run(self):
self.init() #Device initialization (Not relevant, therefore omitted)
time.sleep(0.1)
while self.state == True: #Thread loop (data acquisition)
self.emitValues() #Fun to get the data and emit
time.sleep(0.016)
self.emitGraph() #Process data into 2D and emit
try: #When while is over, terminate the thread
self.beam.close(self.session)
except RuntimeError as err:
print err
self.quit()
def emitGraph(self): #Use the data acquired to to generate 2D image and emit
xx, yy = np.meshgrid(self.slit_data_int[self.slit][0::10], self.slit_data_int[self.slit+1][0::10])
zz = xx * yy
self._signalGraph.emit(
self.slit_data_pos[self.slit][0::10],
self.slit_data_int[self.slit][0::10],
self.slit_data_pos[self.slit + 1][0::10],
self.slit_data_int[self.slit + 1][0::10],
zz
)
def emitValues(self):
try: #Try to get data from device (data is stored in calculation_result)
self.slit_data_pos, self.slit_data_int, self.calculation_result, self.power, self.power_saturation, self.power_intensities = self.beam.get_slit_scan_data(self.session)
except RuntimeError as err:
self._signalError.emit(str(err))
return
else: #emit data to gui main thread
self._signalValues.emit(
self.calculation_result[self.slit].peakPosition,
self.calculation_result[self.slit + 1].peakPosition,
self.calculation_result[self.slit].peakIntensity,
self.calculation_result[self.slit + 1].peakIntensity,
self.calculation_result[self.slit].centroidPosition,
self.calculation_result[self.slit + 1].centroidPosition,
self.calculation_result[self.slit].gaussianFitDiameter,
self.calculation_result[self.slit + 1].gaussianFitDiameter
)
Main Gui代码:
class BP209_class(QtGui.QWidget):
def __init__(self, vbox, slit25, slit5, peakposx, peakposy, peakintx, peakinty, centroidposx, centroidposy, mfdx, mfdy):
QtGui.QWidget.__init__(self)
#Initialize a bunch of gui variables
self.matplotlibWidget = MatplotlibWidget('2d')
self.vboxBeam = vbox
self.vboxBeam.addWidget(self.matplotlibWidget)
self.vboxBeam.addWidget(self.matplotlibWidget.canvastoolbar)
#Create the thread and connects
self.thread = ThreadGraph(self)
self.thread._signalError.connect(self.Error_Handling)
self.thread._signalValues.connect(self.values_update)
self.thread._signalGraph.connect(self.graph_update)
self.thread.BEAMstatus.connect(self.Status)
#Initialize variables for plots
self.zz = zeros([750, 750])
self.im = self.matplotlibWidget.axis.imshow(self.zz, cmap=cm.jet, origin='upper', vmin=0, vmax=1, aspect='auto', extent=[-5000,5000,-5000,5000])
self.pv, = self.matplotlibWidget.axis.plot(np.zeros(750) , np.zeros(750) , color="white" , alpha=0.6, lw=2)
self.ph, = self.matplotlibWidget.axis.plot(np.zeros(750) , np.zeros(750), color="white" , alpha=0.6, lw=2)
self.matplotlibWidget.figure.subplots_adjust(left=0.00, bottom=0.01, right=0.99, top=1, wspace=None, hspace=None)
self.matplotlibWidget.axis.set_xlim([-5000, 5000])
self.matplotlibWidget.axis.set_ylim([-5000,5000])
def __del__(self): #stop thread
self.thread.state = False
self.thread.wait()
def start(self): #start thread
if self.thread.state == False:
self.thread.state = True
self.thread.start()
else:
self.thread.state = False
self.thread.wait()
#Slot that receives data from device and plots it
def graph_update(self, slit_samples_positionsX, slit_samples_intensitiesX, slit_samples_positionsY, slit_samples_intensitiesY, zz):
self.pv.set_data(np.divide(slit_samples_intensitiesX, 15)-5000, slit_samples_positionsX)
self.ph.set_data(slit_samples_positionsY, np.divide(slit_samples_intensitiesY, 15)-5000)
self.im.set_data(zz)
self.im.autoscale()
self.matplotlibWidget.canvas.draw()
编辑:我还有一个连接到我的系统的相机,我也使用opencv在gui中显示它。我注意到,如果我启动凸轮,光束分析仪的fps会减少到近一半。那么,也许QT涂料优化是可行的方法?
答案 0 :(得分:1)
拨打canvas.draw()
的费用很高。您可能比绘图命令可以完成的更快地获取数据。这将导致绘制事件排队等候,您的绘图将显得滞后。此blog post详细说明了一种避免调用canvas.draw()
的方法,可用于加速matplotlib实时绘图。
如果仍然不够快,您可能不得不降低采集速率,实施某种形式的跳帧机制或使用更好的速度优化的不同绘图库。