我有一个名为inventory
的pandas df,它有一个包含Part Numbers
(AlphaNumeric)的列。其中一些部件号已被取代,我还有另一个名为replace_with
的df,其中包含两列'old part numbers'
和'new part numbers'
。
例如:
库存的值如下:
* 123AAA
* 123BBB
* 123CCC
......
和replace-with具有类似
的值**oldPartnumbers** ..... **newPartnumbers**
* 123AAA ............ 123ABC
* 123CCC ........... 123DEF
所以,我需要用新数字替换库存中的相应值。更换后的库存将如下所示:
* 123ABC
* 123BBB
* 123DEF
在python中有一种简单的方法吗?谢谢!
答案 0 :(得分:2)
设置
考虑数据框inventory
和replace_with
inventory = pd.DataFrame(dict(Partnumbers=['123AAA', '123BBB', '123CCC']))
replace_with = pd.DataFrame(dict(
oldPartnumbers=['123AAA', '123BBB', '123CCC'],
newPartnumbers=['123ABC', '123DEF', '123GHI']
))
选项1
map
d = replace_with.set_index('oldPartnumbers').newPartnumbers
inventory['Partnumbers'] = inventory['Partnumbers'].map(d)
inventory
Partnumbers
0 123ABC
1 123DEF
2 123GHI
选项2
replace
d = replace_with.set_index('oldPartnumbers').newPartnumbers
inventory['Partnumbers'].replace(d, inplace=True)
inventory
Partnumbers
0 123ABC
1 123DEF
2 123GHI
答案 1 :(得分:1)
假设您有2个df如下:
import pandas as pd
df1 = pd.DataFrame([[1,3],[5,4],[6,7]], columns = ['PN','name'])
df2 = pd.DataFrame([[2,22],[3,33],[4,44],[5,55]], columns = ['oldname','newname'])
DF1:
PN oldname
0 1 3
1 5 4
2 6 7
DF2:
oldname newname
0 2 22
1 3 33
2 4 44
3 5 55
在他们之间运行左联接:
temp = df1.merge(df2,'left',left_on='name',right_on='oldname')
温度:
PN name oldname newname
0 1 3 3.0 33.0
1 5 4 4.0 44.0
2 6 7 NaN NaN
然后计算新的name
列并替换它:
df1['name'] = temp.apply(lambda row: row['newname'] if pd.notnull(row['newname']) else row['name'], axis=1)
DF1:
PN name
0 1 33.0
1 5 44.0
2 6 7.0
或一个班次:
df1['name'] = df1.merge(df2,'left',left_on='name',right_on='oldname').apply(lambda row: row['newname'] if pd.notnull(row['newname']) else row['name'], axis=1)
答案 2 :(得分:1)
这个解决方案相对较快 - 它使用pandas数据对齐和numpy" copyto"功能
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'partNumbers': ['123AAA', '123BBB', '123CCC', '123DDD']})
df2 = pd.DataFrame({'oldPartnumbers': ['123AAA', '123BBB', '123CCC'],
'newPartnumbers': ['123ABC', '123DEF', '123GHI']})
# assign index in each dataframe to original part number columns
# (faster than set_index method, but use set_index if original index must be preserved)
df1.index = df1.partNumbers
df2.index = df2.oldPartnumbers
# use pandas index data alignment
df1['updatedPartNumbers'] = df2.newPartnumbers
# use numpy to copy in old part num when a new part num is not found
np.copyto(df1.updatedPartNumbers.values,
df1.partNumbers.values,
where=pd.isnull(df1.updatedPartNumbers))
# reset index
df1.reset_index(drop=True, inplace=True)
DF1:
partNumbers updatedPartNumbers
0 123AAA 123ABC
1 123BBB 123DEF
2 123CCC 123GHI
3 123DDD 123DDD