ResourceExhaustedError:分配具有形状的张量时的OOM [256,100000000]

时间:2017-07-02 18:33:39

标签: python-3.x tensorflow deep-learning multilabel-classification

我正在使用TensorFlow变量来解决我的分类问题。输出类的数量为1e8。

n_inputs = 5000
n_classes = 1e8
features = tf.placeholder(tf.float32, [None, n_inputs])
labels = tf.placeholder(tf.float32, [None, n_classes])

h_layer = 256

weights = {
'hidden_weights' : tf.Variable(tf.random_normal([n_inputs, h_layer])),
'out_weights' : tf.Variable(tf.random_normal([h_layer, int(n_classes)]))
}

bias = {
'hidden_bias' : tf.Variable(tf.random_normal([h_layer])),
'out_bias' : tf.Variable(tf.random_normal([int(n_classes)]))
}

在运行此代码时,我收到ResourceExhaustedError以分配' out_weights'用(256,100000000)。无论如何我能克服这个问题吗?

仅供参考:我在CPU中运行此代码。

请在下面找到堆栈跟踪:

---------------------------------------------------------------------------
ResourceExhaustedError                    Traceback (most recent call last)
C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1021     try:
-> 1022       return fn(*args)
   1023     except errors.OpError as e:

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1003                                  feed_dict, fetch_list, target_list,
-> 1004                                  status, run_metadata)
   1005 

C:\Anaconda\envs\tensorflow\lib\contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
    465           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466           pywrap_tensorflow.TF_GetCode(status))
    467   finally:

ResourceExhaustedError: OOM when allocating tensor with shape[256,100000000]
     [[Node: random_normal_5/RandomStandardNormal = RandomStandardNormal[T=DT_INT32, dtype=DT_FLOAT, seed=0, seed2=0, _device="/job:localhost/replica:0/task:0/cpu:0"](random_normal_5/shape)]]

During handling of the above exception, another exception occurred:

ResourceExhaustedError                    Traceback (most recent call last)
<ipython-input-26-d5491564869f> in <module>()
     39 init = tf.global_variables_initializer()
     40 with tf.Session() as sess:
---> 41     sess.run(init)
     42     total_batches = batches(batchSize, train_features, train_labels)
     43 

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    765     try:
    766       result = self._run(None, fetches, feed_dict, options_ptr,
--> 767                          run_metadata_ptr)
    768       if run_metadata:
    769         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    963     if final_fetches or final_targets:
    964       results = self._do_run(handle, final_targets, final_fetches,
--> 965                              feed_dict_string, options, run_metadata)
    966     else:
    967       results = []

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1013     if handle is None:
   1014       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015                            target_list, options, run_metadata)
   1016     else:
   1017       return self._do_call(_prun_fn, self._session, handle, feed_dict,

C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1033         except KeyError:
   1034           pass
-> 1035       raise type(e)(node_def, op, message)
   1036 
   1037   def _extend_graph(self):

ResourceExhaustedError: OOM when allocating tensor with shape[256,100000000]
     [[Node: random_normal_5/RandomStandardNormal = RandomStandardNormal[T=DT_INT32, dtype=DT_FLOAT, seed=0, seed2=0, _device="/job:localhost/replica:0/task:0/cpu:0"](random_normal_5/shape)]]

Caused by op 'random_normal_5/RandomStandardNormal', defined at:
  File "C:\Anaconda\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "C:\Anaconda\envs\tensorflow\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
    app.start()
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-17-f183ffda50a1>", line 10, in <module>
    'out_weights' : tf.Variable(tf.random_normal([h_layer, int(n_classes)]))
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\random_ops.py", line 77, in random_normal
    seed2=seed2)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_random_ops.py", line 189, in _random_standard_normal
    name=name)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
    op_def=op_def)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2327, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "C:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1226, in __init__
    self._traceback = _extract_stack()

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[256,100000000]
     [[Node: random_normal_5/RandomStandardNormal = RandomStandardNormal[T=DT_INT32, dtype=DT_FLOAT, seed=0, seed2=0, _device="/job:localhost/replica:0/task:0/cpu:0"](random_normal_5/shape)]]

1 个答案:

答案 0 :(得分:1)

简短的回答是。如果你想在256和1e8神经元之间建立一个完全连接的层,你最终会在内存中找到256 * 1e8的数字,你无能为力。这似乎是一个错误的模型,然后是一个错误的代码,为什么你会有1e8输出类?即使它们之间具有非常强的相关性,您也可能需要至少1e10(十亿个样本)点来进行训练。你应该重新考虑如何处理手头的任务,我真的不相信你真的需要1e8独立输出。