我有一个相当大的数据框,看起来有点像这样:
| obj1 | obj2 | obj3 |
|------------------------
0 | attr1 | attr2 | attr1 |
1 | attr2 | attr3 | NaN |
2 | attr3 | attrN | NaN |
我是熊猫的新人(ish),但我无法找到让它看起来像这样的方法:
| obj1 | obj2 | obj3 |
------------------------
attr1 | True | False | True |
attr2 | True | False | False |
attr3 | True | False | False |
最狡猾/快速的方法是什么?
修改
我在数据框中没有包含所有属性的任何列。 我可以拥有一个具有其他任何地方都看不到的属性的Obj4
答案 0 :(得分:6)
df = df.set_index('obj1', drop=False).rename_axis(None)
df = df.eq(df['obj1'], axis=0)
print (df)
obj1 obj2 obj3
attr1 True False True
attr2 True False False
attr3 True False False
类似的解决方案:
df = df.set_index('obj1', drop=False).rename_axis(None)
df = df.eq(df.index.values, axis=0)
print (df)
obj1 obj2 obj3
attr1 True False True
attr2 True False False
attr3 True False False
numpy解决方案:
df = pd.DataFrame(df.values == df['obj1'].values[:, None],
index=df['obj1'].values,
columns=df.columns)
print (df)
obj1 obj2 obj3
attr1 True False True
attr2 True False False
attr3 True False False
编辑:
比较所有值并不容易:
vals = df.stack().unique()
L = [pd.Series(df[x].unique(), index=df[x].unique()).reindex(index=vals) for x in df.columns]
df1 = pd.concat(L, axis=1, keys=df.columns)
print (df1)
obj1 obj2 obj3
attr1 attr1 NaN attr1
attr2 attr2 attr2 NaN
attr3 attr3 attr3 NaN
attrN NaN attrN NaN
df1 = df1.eq(df1.index.values, axis=0)
print (df1)
obj1 obj2 obj3
attr1 True False True
attr2 True True False
attr3 True True False
attrN False True False
EDIT1:
df1
的另一种解决方案:
stacked = df.stack()
#reshape to MultiIndex
df1 = stacked.reset_index(name='A').set_index(['level_1','A'])
#MultiIndex with all possible values
mux = pd.MultiIndex.from_product([df1.index.levels[0], stacked.unique()])
#reindex by MultiIndex
df1 = df1.reindex(index=mux)
#replace non NaN values to second level of MultiIndex
df1['level_0'] = df1['level_0'].mask(df1['level_0'].notnull(),
df1.index.get_level_values(1))
#reshape back
df1 = df1['level_0'].unstack(0)
print (df1)
obj1 obj2 obj3
attr1 attr1 NaN attr1
attr2 attr2 attr2 NaN
attr3 attr3 attr3 NaN
attrN NaN attrN NaN