C:\Users\tutzy\Desktop\newtest\amir1>env\scripts\python manage.py createsuperuser
Traceback (most recent call last):
File "manage.py", line 17, in <module>
execute_from_command_line(sys.argv)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\core\management\__init__.py", line 353, in execute_from_command_line
utility.execute()
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\core\management\__init__.py", line 345, in execute
self.fetch_command(subcommand).run_from_argv(self.argv)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\core\management\base.py", line 348, in run_from_argv
self.execute(*args, **cmd_options)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\contrib\auth\management\commands\createsuperuser.py", line 52, in execute
return super(Command, self).execute(*args, **options)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\core\management\base.py", line 413, in execute
translation.activate(saved_locale)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\utils\translation\__init__.py", line 154, in activate
return _trans.activate(language)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\utils\translation\trans_real.py", line 216, in activate
_active.value = translation(language)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\utils\translation\trans_real.py", line 205, in translation
_translations[language] = DjangoTranslation(language)
File "C:\Users\tutzy\Desktop\newtest\amir1\env\lib\site-packages\django\utils\translation\trans_real.py", line 118, in __init__
raise IOError("No translation files found for default language %s." % settings.LANGUAGE_CODE)
IOError: No translation files found for default language en-us.
我无法使用上面的代码对DStream进行重新分区,我的输入有128个分区,这是no。 Kafka partitons,并且由于Join我需要随机读取和写入数据,所以我想通过增加no-of分区来增加并行性。但是分区保持不变。为什么会这样?
答案 0 :(得分:1)
就像map
或filter
一样,repartition
是Spark中的转换,意味着有三件事:
考虑此代码:
dstream_1.foreachRDD(r => r.repartition(500))
在repartition
中使用foreacRDD
作为副作用不起作用。结果RDD
从未使用过,因此重新分区永远不会发生。
我们应该将这种转变与工作中的其他操作“链接”起来。在这种情况下,实现这一目标的一种简单方法是使用transform
代替:
val repartitionedDStream = dstream_1.transform(rdd => rdd.repartition(500))
... use repartitionedDStream further on ...