我是scala的新手,我正在寻找解决此错误。
我正在研究的方案就是这个。我有3张桌子:
用户:包含ID和姓名
商家:包含ID和名称
评论:包含user.ID和business.ID
只有用户进行审核,只有商家才会收到审核。图表将是这样的:
我正在寻找的是:
对于每个用户,我想了解对同一商家进行审核的其他用户
我做了这个动作来创建图表:
val users = sqlContext.sql("Select user_id as ID from user")
val business= sqlContext.sql("Select business_id as ID from business")
users.write.mode(SaveMode.Append).saveAsTable("user_busin_db")
business.write.mode(SaveMode.Append).saveAsTable("user_busin_db")
val user_bus = sqlContext.sql("Select ID from user_busin_db")
val reviews = sqlContext.sql("Select user_id, business_id from review")
表user_bus
将用于创建顶点。
之后,我用GraphX
创建了带有以下代码的图表:
def str2Long(s: String) = s.##.toLong
val vertex: RDD[(VertexId, String)] = user_bus.rdd.map(x => (str2Long(x(0).asInstanceOf[String]),(x(0).asInstanceOf[String])))
val edge:RDD[Edge[String]] = reviews.rdd.map(row => Edge(str2Long(row(0).asInstanceOf[String]), str2Long(row(1).asInstanceOf[String]), "review"))
val default = "missing"
val myGraph = Graph(vertex, edge, default)
myGraph.cache()
现在回答我的问题,我尝试使用此代码为用户和企业做一个aggregateMessages:
val userAggregate: VertexRDD[(List[Long])] = myGraph.aggregateMessages[(List[Long])](triplet => {
triplet.sendToSrc((List(triplet.dstId)))
},
(a,b) => (a.union(b))
)
val businessAggregate: VertexRDD[(List[Long])] = myGraph.aggregateMessages[(List[Long])](triplet => {
triplet.sendToDst((List(triplet.srcId)))
},
(a,b) => (a.union(b))
)
然后是给我错误的代码。为每个用户收集在同一业务上进行评论的其他用户,我写了这个:
userAggregate.map(userAggr =>
(userAggr._1, userAggr._2.flatMap(userAggrListElem =>
userAggr._2.patch(0,businessAggregate.filter(busAggr => busAggr._1 == userAggrListElem).map(row => row._2).take(1)(0),userAggr._2.size+1))))
如果我尝试使用.collect或.count,我会收到此错误:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 138.0 failed 1 times, most recent failure: Lost task 1.0 in stage 138.0 (TID 2807, localhost): java.lang.NullPointerException
at org.apache.spark.graphx.impl.VertexRDDImpl.mapVertexPartitions(VertexRDDImpl.scala:94)
at org.apache.spark.graphx.VertexRDD.filter(VertexRDD.scala:98)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5$$anonfun$apply$1.apply(<console>:102)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5$$anonfun$apply$1.apply(<console>:101)
at scala.collection.immutable.List.flatMap(List.scala:327)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5.apply(<console>:101)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5.apply(<console>:100)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1769)
at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:314)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1890)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1903)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1916)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1930)
at org.apache.spark.rdd.RDD.count(RDD.scala:1134)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:105)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:115)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:117)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:119)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:121)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:123)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:125)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:127)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:129)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:131)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:133)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:135)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:137)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:139)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:141)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:143)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:145)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw.<init>(<console>:147)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw.<init>(<console>:149)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw.<init>(<console>:151)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw.<init>(<console>:153)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw.<init>(<console>:155)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$eval$.$print$lzycompute(<console>:7)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$eval$.$print(<console>:6)
Caused by: java.lang.NullPointerException
at org.apache.spark.graphx.impl.VertexRDDImpl.mapVertexPartitions(VertexRDDImpl.scala:94)
at org.apache.spark.graphx.VertexRDD.filter(VertexRDD.scala:98)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5$$anonfun$apply$1.apply(<console>:102)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5$$anonfun$apply$1.apply(<console>:101)
at scala.collection.immutable.List.flatMap(List.scala:327)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5.apply(<console>:101)
at linea6ec9c0b0ced4184a0288c57eb3bdda585.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$5.apply(<console>:100)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1769)
at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1916)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:314)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
如果我使用userAggregate
的子集,该算法效果很好,的确如果我使用take(1)
我得到了这个结果:
Array[(org.apache.spark.graphx.VertexId, List[Long])] = Array((-1324024017,List(-1851582020, -1799460264, -1614007919, -1573604682, ...)))
其中:(user_ID,List(对同一个企业进行审核的user_id,...)
现在我认为顶点存在问题,有一个未连接的顶点给我NullPointer错误,但我无法找到它并从我的grapf中删除。我该怎么做才能解决这个问题?
答案 0 :(得分:0)
TL; DR 这不是有效的Spark代码。
这是预期的结果。不允许在Apache Spark中嵌套转换,因此您无法在businessAggregate
的闭包内访问userAggregate.map
。