用Source.fromGraph替换已弃用的Source.actorPublisher - 如何限制?

时间:2017-07-01 21:54:55

标签: scala websocket akka akka-stream server-push

现在不推荐Source.actorPublisher,我想找到一个合适的替代品。

警告:我仍然是Akka newb,试图找到我的路!

基本上我所拥有的是websocket,服务器每秒都会推送一条新消息。

相关代码:

// OLD, deprecated way
//val source: Source[TextMessage.Strict, ActorRef] = Source.actorPublisher[String](Props[KeepAliveActor]).map(i => TextMessage(i))

// NEW way
val sourceGraph: Graph[SourceShape[TextMessage.Strict], NotUsed] = new KeepAliveSource
val source: Source[TextMessage.Strict, NotUsed] = Source.fromGraph(sourceGraph)

val requestHandler: HttpRequest => HttpResponse =
{
  case req @ HttpRequest(GET, Uri.Path("/ws"), _, _, _) =>
    req.header[UpgradeToWebSocket] match
    {
      case Some(upgrade) => upgrade.handleMessagesWithSinkSource(Sink.ignore, source)
      case None => HttpResponse(400, entity = "Not a valid websocket request")
    }
  case r: HttpRequest =>
    r.discardEntityBytes() // important to drain incoming HTTP Entity stream
    HttpResponse(404, entity = "Unknown resource!")
}

老演员:(基本上取自:Actorpublisher as source in handleMessagesWithSinkSource

case class KeepAlive()

class KeepAliveActor extends ActorPublisher[String]
{
  import scala.concurrent.duration._
  implicit val ec = context.dispatcher

  val tick = context.system.scheduler.schedule(1 second, 1 second, self, KeepAlive())

  var cnt = 0
  var buffer = Vector.empty[String]

  override def receive: Receive =
  {
    case KeepAlive() =>
    {
      cnt = cnt + 1
      if (buffer.isEmpty && totalDemand > 0)
      {
        onNext(s"${cnt}th Message from server!")
      }
      else {
        buffer :+= cnt.toString
        if (totalDemand > 0) {
          val (use,keep) = buffer.splitAt(totalDemand.toInt)
          buffer = keep
          use foreach onNext
        }
      }
    }
  }

  override def postStop() = tick.cancel()
}

古老的方式就像一个魅力。

现在新代码基于GraphStage

class KeepAliveSource extends GraphStage[SourceShape[TextMessage.Strict]]
{
  import scala.concurrent.duration._

  override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
  {
    new TimerGraphStageLogic(shape)
    {
      // All state MUST be inside the GraphStageLogic,
      // never inside the enclosing GraphStage.
      // This state is safe to access and modify from all the
      // callbacks that are provided by GraphStageLogic and the
      // registered handlers.

      private var counter = 1
      setHandler(out, new OutHandler
      {
        override def onPull(): Unit =
        {
          push(out, TextMessage(counter.toString))
          counter += 1
          schedulePeriodically(None, 1 second)
        }
      })
    }
  }

  val out: Outlet[TextMessage.Strict] = Outlet("KeepAliveSource")
  override def shape: SourceShape[TextMessage.Strict] = SourceShape(out)
}

无论出于何种原因,这仍然让我感到困惑,尽管我假设schedulePeriodically(None, 1 second)会在每条消息之间增加1秒的延迟。我显然是错的。

增加此值并不会改变我的糟糕浏览器无法处理请求和崩溃的事实(我可以在simple websocket client的日志中看到它)

1 个答案:

答案 0 :(得分:1)

schedulePeriodically调用不会影响您的舞台的行为。每当下游阶段请求消息时,都会调用onPull处理程序,并且会立即发送消息push。这就是为什么你看不到任何限制。

尽管GraphStage DSL(您选择的那个)非常灵活,但也很难做到正确。对于像这样的简单任务,最好利用Akka提供的更高级别的阶段。与Source.tickdocs)相似。

  val tickingSource: Source[String, Cancellable] = 
    Source.tick(initialDelay = 1.second, interval = 5.seconds, tick = "hello")

在您的示例中,您需要一个递增的计数器才能发布,因此您可以将更多逻辑附加到滴答源,例如

  val tickingSource: Source[Strict, Cancellable] =
    Source.tick(initialDelay = 1.second, interval = 5.seconds, tick = NotUsed)
      .zipWithIndex
      .map{ case (_, counter) ⇒ TextMessage(counter.toString) }

如果您对基础GraphStage的工作方式感兴趣,可以随时查看TickSource代码本身(请参阅github)。 主要区别在于TickSourcepush回调中调用onTimer(来自TimerGraphStageLogic,您可以覆盖)。