正确使用cudaFortran cuSolver功能

时间:2017-06-29 15:47:06

标签: cuda fortran cusolver

我目前正致力于将一些Fortran代码迁移到cudaFortran。具体而言,该任务涉及大质量矩阵的光谱分析,以使它们对角化。这是我到目前为止所编制的代码

program main
!Trials for usage of cusovlerDn<t>syevd for spectral analysis of a symmetric matrix, see http://docs.nvidia.com/cuda/cusolver/index.html#syevd-example1 for the example used as a base
!Compilation example: 'pgf90  Main.cuf -lcusolver -Mcuda=cuda8.0'
use cudafor !has to go first
use cusolverDn
    implicit none
integer :: info
    integer,parameter :: q2 = SELECTED_REAL_KIND(15,305)
    real(q2), device, dimension(3,3) :: A_d
    real(q2), dimension(3,3) :: A
    real(q2), device, dimension(3) :: W_d
    real(q2), dimension(3) :: W
    integer :: stat, lwork, m, lda
    real(q2), device, allocatable  :: work_d(:)
    integer, device :: devInfo
    type(cusolverDnHandle) :: h
    stat=cusolverDnCreate(h)
        W_d=(/0,0,0/)
print *, stat
    m=3
    lda = m
    A_d(1,1:3)=(/4,1,2/)
    A_d(2,1:3)=(/1,-1,1/)
    A_d(3,1:3)=(/2,1,3/)    !eigenvalues are 5.84947, 1.44865, -1.29812
!   A_d(1,1:3)=(/1,0,0/)
!   A_d(2,1:3)=(/0,1,0/)
!   A_d(3,1:3)=(/0,0,1/)
    stat=cusolverDnDsyevd_bufferSize(h, CUSOLVER_EIG_MODE_NOVECTOR, CUBLAS_FILL_MODE_UPPER, m,  A_d, lda, W_d, lwork)
print *, stat
    allocate(work_d(lwork))
    stat=cusolverDnDsyevd(h, CUSOLVER_EIG_MODE_NOVECTOR, CUBLAS_FILL_MODE_UPPER, m, A_d, lda, W_d, work_d, lwork, devInfo)
print *, stat !returns 6 as if there was an error
info=devInfo
print *, info !devInfo returns 0, as if the operation was successful
    stat=cudaDeviceSynchronize()
print *, stat
    W=W_d
    print *, W
    A=A_d
    print *, A
    deallocate(work_d)
    stat=cusolverDnDestroy(h)
print *, stat
end program main

编译和mem-check输出如下:

olafur@olafur-X556UQK:~/Skyrmions2017/Project$ pgf90  Main.cuf -lcusolver -Mcuda=cuda8.0
olafur@olafur-X556UQK:~/Skyrmions2017/Project$ cuda-memcheck ./a.out
========= CUDA-MEMCHECK
            0
            0
========= Program hit cudaErrorInvalidDeviceFunction (error 8) due to "invalid device function" on CUDA API call to cudaLaunch. 
=========     Saved host backtrace up to driver entry point at error
=========     Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x2ef503]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x5b906e]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e0857]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e0270]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e3df3]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e1720]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e0157]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 (cusolverDnDsytrd + 0x37) [0x2e3f17]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2ea607]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2eb744]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 (cusolverDnDsyevd + 0x27) [0x2ea157]
=========     Host Frame:./a.out [0x1b2d]
=========     Host Frame:./a.out [0x1514]
=========     Host Frame:/lib/x86_64-linux-gnu/libc.so.6 (__libc_start_main + 0xf0) [0x20830]
=========     Host Frame:./a.out [0x13f9]
=========
            6
========= Program hit cudaErrorInvalidDeviceFunction (error 8) due to "invalid device function" on CUDA API call to cudaGetLastError. 
=========     Saved host backtrace up to driver entry point at error
=========     Host Frame:/usr/lib/x86_64-linux-gnu/libcuda.so.1 [0x2ef503]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x5b6793]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e1727]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2e0157]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 (cusolverDnDsytrd + 0x37) [0x2e3f17]
            0
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2ea607]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 [0x2eb744]
=========     Host Frame:/opt/pgi/linux86-64/2017/cuda/8.0/lib64/libcusolver.so.8.0 (cusolverDnDsyevd + 0x27) [0x2ea157]
=========     Host Frame:./a.out [0x1b2d]
            0
=========     Host Frame:./a.out [0x1514]
=========     Host Frame:/lib/x86_64-linux-gnu/libc.so.6 (__libc_start_main + 0xf0) [0x20830]
=========     Host Frame:./a.out [0x13f9]
=========
    0.000000000000000         0.000000000000000         0.000000000000000     
    4.000000000000000         1.000000000000000         2.000000000000000      
    1.000000000000000        -1.000000000000000         1.000000000000000      
    2.000000000000000         1.000000000000000         3.000000000000000     
            0
========= ERROR SUMMARY: 2 errors

看起来我实际上没有正确调用cusolverDnDsyevd函数,很可能我没有使用正确类型的变量。但由于我在编程方面是半文盲,我必须遵循的唯一例子是用C语言编写的(使用那些花哨的虚空事物)我不知道什么是正确的。

编辑:deviceQuery

的完整输出
olafur@olafur-X556UQK:~/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuery$ ./deviceQuery
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce 940MX"
  CUDA Driver Version / Runtime Version          8.0 / 8.0
  CUDA Capability Major/Minor version number:    5.0
  Total amount of global memory:                 2002 MBytes (2099642368 bytes)
  ( 3) Multiprocessors, (128) CUDA Cores/MP:     384 CUDA Cores
  GPU Max Clock rate:                            1242 MHz (1.24 GHz)
  Memory Clock rate:                             900 Mhz
  Memory Bus Width:                              64-bit
  L2 Cache Size:                                 1048576 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce 940MX
Result = PASS

1 个答案:

答案 0 :(得分:0)

由于代码在我可以使用的另一个系统上正常工作,因此问题确实是运行时环境问题,正如Robert Crovella所建议的

故事的道德:始终尝试至少2个系统。