其中e_i
代表欧几里德空间的i
标准基础。有没有一种有效的方法来计算它?我使用以下for循环和Kruskal-tensor ktensor
使用Sandia National Labs管理的tensor toolbox计算它:
x=ktensor({c,c,c});
I=eye(d);
for i=1:d
x=x+2*c(i)*ktensor({I(:,i),I(:,i),I(:,i)}
end
for i=1:d
for j=1:d
x=x- c(i)*c(j)*(ktensor({I(:,i),I(:,i),I(:,j)})+ktensor({I(:,i),I(:,j),I(:,i)})+ktensor({I(:,i),I(:,j),I(:,j)}))
end
end
答案 0 :(得分:2)
这是一种可能性。
c
的值放在"对角线"张量的。bsxfun
似乎是合适的。bsxfun
,但由于结果有点稀疏,你可能会因为填充它而受益#34;#34;如果矩阵的大小很大。以下是代码:
dim = 10;
c = [1:dim]';
e = eye(dim);
x = zeros([dim, dim, dim]);
% initialize with second term
x(1:dim*(dim+1)+1:end) = 2 * c;
% add first term
x = x + bsxfun(@times, bsxfun(@times, c, shiftdim(c, -1)), shiftdim(c, -2));
% add third term
x = x - sum(sum(bsxfun(@times, shiftdim(c*c',-3), ...
bsxfun(@times, bsxfun(@times, permute(e, [1, 3, 4, 2, 5]), permute(e, [3, 1, 4, 2, 5])), permute(e, [3, 4, 1, 5, 2])) +...
bsxfun(@times, bsxfun(@times, permute(e, [1, 3, 4, 2, 5]), permute(e, [3, 1, 4, 5, 2])), permute(e, [3, 4, 1, 2, 5])) +...
bsxfun(@times, bsxfun(@times, permute(e, [1, 3, 4, 5, 2]), permute(e, [3, 1, 4, 2, 5])), permute(e, [3, 4, 1, 2, 5]))), 5), 4);
修改强>
第三项的更有效(特别是记忆)计算:
ec = bsxfun(@times, e, c);
x = x - ...
bsxfun(@times, ec, shiftdim(c, -2)) -...
bsxfun(@times, c', reshape(ec, [dim, 1, dim])) -....
bsxfun(@times, c, reshape(ec, [1, dim, dim]));
答案 1 :(得分:0)
您可以尝试Parallel Computing Toolbox即parfor
循环。
x=ktensor({c,c,c});
I=eye(d);
y = zeros(d,d,d, d);
parfor i=1:d
y(:,:,:, i) = 2*c(i)*ktensor({I(:,i),I(:,i),I(:,i)};
end
x = x + sum(y, 4);
z = zeros(d,d,d, d,d);
parfor i=1:d
for j=1:d % only one layer of parallelization is allowed
z(:,:,:, i,j) = c(i)*c(j)*(ktensor({I(:,i),I(:,i),I(:,j)})+ktensor({I(:,i),I(:,j),I(:,i)})+ktensor({I(:,i),I(:,j),I(:,j)}));
end
end
x = x - sum(sum(z, 5), 4);
x % is your result
它只运行未触及的ktensor
命令,但是在不同的线程中,因此Toolbox负责并行运行代码。
由于每次迭代的独立性,这意味着,例如,c_{i+1, j+1}
不依赖于c_{i, j}
,这是可能的。
根据系统内核(和超线程)的数量,最多可能有#-of-cores-times-times-times。