Python - 如何在pandas

时间:2017-06-29 13:43:39

标签: python pandas indexing

我有一个多idmonth作为索引的多数据框

enter image description here

对于每个id(索引1),我希望能够将month(索引2)切片,直到列amount1或amount2中的最后一个非零值。

期望的输出
enter image description here

我已尝试切割所有ID但我无法弄清楚我应该为每个ID切割不同的卡盘:

df.loc[:,:max(df[df['amount1'] != 0].index)[1]]

1 个答案:

答案 0 :(得分:1)

可能有更有效的选择。但是使用以下代码,您可以实现您想要的目标:

import pandas as pd

# We create the original dataframe
arrays = [[102,102,102,102,102,102,102,102,103,103,103,103,103,103,103,104,104,104,104,104,104,104,104,104,104],
["11/1/2004","12/1/2004","1/1/2005","2/1/2005","3/1/2005","4/1/2005","5/1/2005","6/1/2005","4/1/2003","5/1/2003","6/1/2003","7/1/2003","8/1/2003","9/1/2003","10/1/2003","8/1/2003","9/1/2003","10/1/2003","11/1/2003","12/1/2003","1/1/2004","2/1/2004","3/1/2004","4/1/2004","5/1/2004"]]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['id', 'month'])
amount1 = [0,0,-9100000,0,1444.1,0,0,0,0,0,0,-5.4e7,0,0,0,0,0,0,0,-3.3e7,-4.3e7,0,0,0,0]
amount2 = [1105.900001,0,1037.3,0,0,0,0,0,0,0,0,0,0,0,0,117.4199962,117.315,0,0,107.77771641,105.9499986,0,106.3398808,0,0]
df = pd.DataFrame({"amount1": amount1, "amount2": amount2},index=index)

# We slice the dataframe by ids
df_out_list = list()
for i,id in enumerate(df.index.levels[0]):
    df2 = df.xs((id,))
    df2_nonzeros = df2[(df2['amount1'] != 0) | (df2['amount2'] != 0)]
    df2_result = df2[:df2_nonzeros.tail(1).index[0]]
    N = len(df2_result.index)
    arrays = [[id]*N, df2_result.index]
    tuples_result = list(zip(*arrays))
    index_result = pd.MultiIndex.from_tuples(tuples_result, names=['id', 'month'])
    df_out_list.append(pd.DataFrame({"amount1": list(df2_result["amount1"]),"amount2": list(df2_result["amount2"])},index=index_result))

# We create the output dataframe appending the dataframes by id
for i,df_el in enumerate(df_out_list):
    if i==0:
        df_out = df_el
    else:
        df_out = df_out.append(df_el)

print df
print df_out

这样的输出是:

enter image description here