我有一个包含0,1和np.nan的pandas系列:
import pandas as pd
import numpy as np
df1 = pd.Series([ 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, np.nan, np.nan, 1])
df1
Out[6]:
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
5 1.0
6 1.0
7 1.0
8 0.0
9 0.0
10 0.0
11 NaN
12 NaN
13 1.0
dtype: float64
我想创建一个数据帧df2,其中包含具有相同值的间隔的开始和结束,以及相关的值...在这种情况下,df2应该是......
df2
Out[5]:
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0
3 11 12 NaN
4 13 13 1
遵循解决方案here:
s = df1.ne(df1.shift()).cumsum()
df2 = df1.groupby(s).apply(lambda x: pd.Series([x.index[0], x.index[-1], x.iat[0]],
index=['Start','End','Value']))
.unstack().reset_index(drop=True)
但是对于这种情况不起作用
df2
Out[11]:
Start End Value
0 0.0 4.0 0.0
1 5.0 7.0 1.0
2 8.0 10.0 0.0
3 11.0 11.0 NaN
4 12.0 12.0 NaN
5 13.0 13.0 1.0
答案 0 :(得分:2)
NaNs
存在平等检查问题。你可以解决,暂时用一个不起眼的价值填充它。
In [361]: s = df1.fillna('-dummy-').ne(df1.fillna('-dummy-').shift()).cumsum()
In [362]: df1.groupby(s).apply(lambda x: pd.Series([x.index[0], x.index[-1], x.iat[0]],
...: index=['Start','End','Value']))
...: .unstack().reset_index(drop=True)
Out[362]:
Start End Value
0 0.0 4.0 0.0
1 5.0 7.0 1.0
2 8.0 10.0 0.0
3 11.0 12.0 NaN
4 13.0 13.0 1.0