如何使用Mathjax呈现python代码?

时间:2017-06-29 08:38:34

标签: python latex mathjax

我想使用Mathjax使用python代码?我试过下面的代码,但它不是渲染python,而是渲染数学方程式。

您可以在jsbin中进行测试。

相同的代码如下所示:

<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>
<!-- <script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script> -->

<script type="text/x-mathjax-config">
          MathJax.Hub.Config({
            TeX: {extensions:["mhchem.js"]},
            jax: ["input/TeX", "output/HTML-CSS"],
            tex2jax: {
                    inlineMath: [["$","$"],["\\(","\\)"]]
            },
            "HTML-CSS": { preferredFont: "TeX", availableFonts: ["STIX","TeX"] },
             processEscapes: true
        });
    </script>

<script type="text/javascript"
  src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML">
</script>

</head>
<body>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

<pre>
~~
import numpy as np
a = np.zeros((1, 2))
~~
</pre>
</body>
</html>

1 个答案:

答案 0 :(得分:0)

您可以使用Google Code Prettify渲染Python代码并使用Mathjax渲染数学方程式。

<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>

<!--Google Code Prettify script tag-->
<script src="https://cdn.rawgit.com/google/code-prettify/master/loader/run_prettify.js"></script>

<!-- <script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script> -->

<script type="text/x-mathjax-config">
          MathJax.Hub.Config({
            TeX: {extensions:["mhchem.js"]},
            jax: ["input/TeX", "output/HTML-CSS"],
            tex2jax: {
                    inlineMath: [["$","$"],["\\(","\\)"]]
            },
            "HTML-CSS": { preferredFont: "TeX", availableFonts: ["STIX","TeX"] },
             processEscapes: true
        });
    </script>

<script type="text/javascript"
  src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML">
</script>

</head>
<body>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

<!--Google Code Prettify usage-->
<pre class="prettyprint">
~~
import numpy as np
a = np.zeros((1, 2))
~~
</pre>
</body>
</html>