此代码,使用tensorflow进行线性回归,使用Jupyter Notebook,python-3完成。
引用的代码 here
我的csv数据包含两个col:Height&的SoC。 我想在图表上绘制我的所有数据点,X轴为高度,Y轴为SoC,然后绘制我从模型得到的最佳拟合线(如下面的代码所示)。
SoC的值范围为0到100,高度值的范围为0到1
高度和SoC都是Float。
我可以绘制的当前图表(在下面的代码中)看起来不像我想要的那样。
如何绘制此特定图表?提前谢谢!
代码:
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
rng = np.random
from numpy import genfromtxt
from sklearn.datasets import load_boston
# Parameters
learning_rate = 0.0001
training_epochs = 1000
display_step = 50
n_samples = 222
X = tf.placeholder("float") # create symbolic variables
Y = tf.placeholder("float")
filename_queue = tf.train.string_input_producer(["battdata.csv"],shuffle=False)
reader = tf.TextLineReader() # skip_header_lines=1 if csv has headers
key, value = reader.read(filename_queue)
# Default values, in case of empty columns. Also specifies the type of the
# decoded result.
record_defaults = [[1.], [1.]]
height, soc= tf.decode_csv(
value, record_defaults=record_defaults)
features = tf.stack([height])
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred_soc = tf.add(tf.multiply(height, W), b) # XW + b <- y = mx + b where W is gradient, b is intercept
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred_soc-soc, 2))/(2*n_samples)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
_, cost_value = sess.run([optimizer,cost])
#Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost)
print( "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost)
print ("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
#Plot data after completing training
train_X = []
train_Y = []
for i in range(n_samples): #Your input data size to loop through once
X, Y = sess.run([height, pred_soc]) # Call pred, to get the prediction with the updated weights
train_X.append(X)
train_Y.append(Y)
#Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.ylabel("SoC")
plt.xlabel("Height")
plt.axis([0, 1, 0, 100])
plt.plot(train_X, train_Y, linewidth=2.0)
plt.legend()
plt.show()
coord.request_stop()
coord.join(threads)