起初,我很抱歉我的蟒蛇水平很差, 所以我有下一个问题:
1)我在这个资源上给了很多答案,但对我来说没什么用
(np.abs(a.values[:,np.newaxis]-a2.values)
和简单np.diff()
以及许多其他方式)
2!)我的csv文件格式如下:
A 12 43 51 10 74
B 14 32 31 27 23
C 13 62 13 33 82
D 18 31 73 70 42
我需要在raws中的所有列之间接收残差,所以
A:12-43 12-51 12-10 12-74... 43-12 43-51 43-10 43-74...
B:12-43 12-51 12-10 12-74... 43-12 43-51 43-10 43-74...
之后我需要12-43 12-51 12-10 12-74... 43-12 43-51 43-10 43-74...
据我所知,大熊猫对桌子有好处,但我怎么做呢?
如果可以的话,请以我需要的方式去做,以便截止10%的极端结果?非常感谢您的关注和功能帮助。
答案 0 :(得分:0)
我建议使用numpy
。为了计算你可以做的差异
>>> a = numpy.array([[12, 43, 51, 10, 74],
... [14, 32, 31, 27, 23],
... [13, 62, 13, 33, 82],
... [18, 31, 73, 70, 42]])
>>> difference_matrix = numpy.repeat(a, a.shape[-1], axis=-1) - numpy.tile(a, a.shape[-1])
>>> difference_matrix
array([[ 0, -31, -39, 2, -62, 31, 0, -8, 33, -31, 39, 8, 0,
41, -23, -2, -33, -41, 0, -64, 62, 31, 23, 64, 0],
[ 0, -18, -17, -13, -9, 18, 0, 1, 5, 9, 17, -1, 0,
4, 8, 13, -5, -4, 0, 4, 9, -9, -8, -4, 0],
[ 0, -49, 0, -20, -69, 49, 0, 49, 29, -20, 0, -49, 0,
-20, -69, 20, -29, 20, 0, -49, 69, 20, 69, 49, 0],
[ 0, -13, -55, -52, -24, 13, 0, -42, -39, -11, 55, 42, 0,
3, 31, 52, 39, -3, 0, 28, 24, 11, -31, -28, 0]])
如果你想对结果进行平方,你可以简单地将它应用到矩阵中,每个元素都将被平方:
>>> difference_matrix ** 2
array([[ 0, 961, 1521, 4, 3844, 961, 0, 64, 1089, 961, 1521,
64, 0, 1681, 529, 4, 1089, 1681, 0, 4096, 3844, 961,
529, 4096, 0],
[ 0, 324, 289, 169, 81, 324, 0, 1, 25, 81, 289,
1, 0, 16, 64, 169, 25, 16, 0, 16, 81, 81,
64, 16, 0],
[ 0, 2401, 0, 400, 4761, 2401, 0, 2401, 841, 400, 0,
2401, 0, 400, 4761, 400, 841, 400, 0, 2401, 4761, 400,
4761, 2401, 0],
[ 0, 169, 3025, 2704, 576, 169, 0, 1764, 1521, 121, 3025,
1764, 0, 9, 961, 2704, 1521, 9, 0, 784, 576, 121,
961, 784, 0]])
答案 1 :(得分:0)
pandas不容易接受数组作为元素,所以numpy在这里是一个很好的帮助。
首先按行(axis=1
)制作所有差异:
data="""
A 12 43 51 10 74
B 14 32 31 27 23
C 13 62 13 33 82
D 18 31 73 70 42
"""
pd.read_table(io.StringIO(data),header=None,index_col=0,sep=' ')
all_differences=np.apply_along_axis(lambda x:np.subtract.outer(x,x).ravel(),axis=1,arr=df)
然后排序切断:
all_differences.sort(axis=1)
并选择好的值,丢弃L[i]-L[i]
生成的0。
n=df.shape[1]
cutoff =[i for i in range(n*n) if n*n*5//100<=i<n*(n-1)//2 or n*(n+1)//2<=i<n*n*95//100]
res=2.**all_differences[:,cutoff]