清理验证码图像

时间:2017-06-27 19:07:10

标签: python image opencv computer-vision captcha

captcha image

我正在尝试清理上面的图像我尝试了几种使用open cv的不同方法,我要么过多地侵蚀原始图像,使得部分字母丢失,如下所示:

result of erosion via python opencv 3

我不确定如何摆脱最后一条对角线并修复S,到目前为止我的代码是:

import cv2 
import matplotlib.pylab as plt
img = cv2.imread('/captcha_3blHDdS.png')

#make image gray 
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#Blur
blur = cv2.GaussianBlur(gray,(5,5),0)
bilateral = cv2.bilateralFilter(gray,5,75,75)

#Thresholding
ret, thresh = cv2.threshold(bilateral,25,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

#Kernal
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

#other things
erosion = cv2.erode(thresh,kernel,iterations = 1)
closing = cv2.morphologyEx(erosion, cv2.MORPH_CLOSE, kernel, iterations = 1)

#Transform image
dist_transform = cv2.distanceTransform(closing,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.02*dist_transform.max(),255,cv2.THRESH_BINARY)#,255,0)

#kernel_1
kernel_1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 2))

dilation_1 = cv2.dilate(sure_fg,kernel_1,iterations = 2)
erosion_1 = cv2.erode(dilation_1,kernel_1,iterations = 3)

plt.imshow(erosion_1, 'gray')

非常感谢任何帮助。以下是从验证码产生的图像类型的更多示例; example of captcha images

还指向包含images

的文件夹的链接

2 个答案:

答案 0 :(得分:20)

这是一个使用OpenCvSharp的C#解决方案(应该很容易转换回python / c ++,因为方法名称完全相同)。

它使用OpenCV的inpainting技术来避免在可能运行OCR阶段之前销毁过多的字母。我们可以看到线条的颜色与其他颜色不同,所以我们会在任何灰度/黑白之前很早就使用这些信息。步骤如下:

  • 使用颜色(#707070)
  • 从线条构建蒙版
  • 扩展掩盖了一点,因为这些线可能是用抗锯齿绘制的
  • 使用此蒙版重绘(“inpaint”)原始图像,这将删除线条,同时保留线条(字母)下面的大部分内容。请注意,我们可以在该步骤之前删除小点,我认为它会更好
  • 应用一些扩张/模糊/阈值来完成

这是面具:

enter image description here

结果如下:

enter image description here

以下是样本集的结果:

enter image description here

这是C#代码:

static void Decaptcha(string filePath)
{
    // load the file
    using (var src = new Mat(filePath))
    {
        using (var binaryMask = new Mat())
        {
            // lines color is different than text
            var linesColor = Scalar.FromRgb(0x70, 0x70, 0x70);

            // build a mask of lines
            Cv2.InRange(src, linesColor, linesColor, binaryMask);
            using (var masked = new Mat())
            {
                // build the corresponding image
                // dilate lines a bit because aliasing may have filtered borders too much during masking
                src.CopyTo(masked, binaryMask);
                int linesDilate = 3;
                using (var element = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(linesDilate, linesDilate)))
                {
                    Cv2.Dilate(masked, masked, element);
                }

                // convert mask to grayscale
                Cv2.CvtColor(masked, masked, ColorConversionCodes.BGR2GRAY);
                using (var dst = src.EmptyClone())
                {
                    // repaint big lines
                    Cv2.Inpaint(src, masked, dst, 3, InpaintMethod.NS);

                    // destroy small lines
                    linesDilate = 2;
                    using (var element = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(linesDilate, linesDilate)))
                    {
                        Cv2.Dilate(dst, dst, element);
                    }

                    Cv2.GaussianBlur(dst, dst, new Size(5, 5), 0);
                    using (var dst2 = dst.BilateralFilter(5, 75, 75))
                    {
                        // basically make it B&W
                        Cv2.CvtColor(dst2, dst2, ColorConversionCodes.BGR2GRAY);
                        Cv2.Threshold(dst2, dst2, 255, 255, ThresholdTypes.Otsu);

                        // save the file
                        dst2.SaveImage(Path.Combine(
                            Path.GetDirectoryName(filePath),
                            Path.GetFileNameWithoutExtension(filePath) + "_dst" + Path.GetExtension(filePath)));
                    }
                }
            }
        }
    }
}

答案 1 :(得分:7)

仔细查看验证码。该图像中的大部分灰尘与文本具有不同的灰度值。

文字在140,灰尘在112

简单的灰度过滤在这里会有很多帮助。

from scipy.misc import imread, imsave
import numpy as np

infile = "A1nO4.png"
outfile = "A1nO4_out.png"

im = imread(infile, True)
out_im = np.ones(im.shape) * 255

out_im[im == 140] = 0

imsave(outfile, out_im)

enter image description here

现在使用cv2.dilatecv2.erode在黑色文本上的白色)来消除剩余的灰尘。