以下是我的数据框中的示例:
id DPT_DATE TRANCHE_NO TRAIN_NO J_X RES_HOLD_IND
0 2017-04-01 330.0 1234.0 -1.0 100.0
1 2017-04-01 330.0 1234.0 0.0 80.0
2 2017-04-02 331.0 1235.0 -1.0 91.0
3 2017-04-02 331.0 1235.0 0.0 83.0
4 2017-04-03 332.0 1236.0 -1.0 92.0
5 2017-04-03 332.0 1236.0 0.0 81.0
6 2017-04-04 333.0 1237.0 -1.0 87.0
7 2017-04-04 333.0 1237.0 0.0 70.0
8 2017-04-05 334.0 1238.0 -1.0 93.0
9 2017-04-05 334.0 1238.0 0.0 90.0
10 2017-04-06 335.0 1239.0 -1.0 89.0
11 2017-04-06 335.0 1239.0 0.0 85.0
12 2017-04-07 336.0 1240.0 -1.0 82.0
13 2017-04-07 336.0 1240.0 0.0 76.0
这是Trains'的数据框。预订,DPT_DATE =出发日期TRAIN_NO =火车次数J_X =出发前的天数(J_X = 0.0表示出发日,J_X = -1表示出发后的天数),RES_HOLD_IND是当天的预订保留
我想为每个DPT_DATE创建一个新列,TRAIN_NO为我提供当天的RES_HOLD_IND J_X = -1
示例(我想要这个):
id DPT_DATE TRANCHE_NO TRAIN_NO J_X RES_HOLD_IND RES_J-1
0 2017-04-01 330.0 1234.0 -1.0 100.0 100.0
1 2017-04-01 330.0 1234.0 0.0 80.0 100.0
2 2017-04-02 331.0 1235.0 -1.0 91.0 91.0
3 2017-04-02 331.0 1235.0 0.0 83.0 91.0
4 2017-04-03 332.0 1236.0 -1.0 92.0 92.0
5 2017-04-03 332.0 1236.0 0.0 81.0 92.0
6 2017-04-04 333.0 1237.0 -1.0 87.0 87.0
7 2017-04-04 333.0 1237.0 0.0 70.0 87.0
感谢您的帮助!
答案 0 :(得分:2)
我认为您需要先按boolean indexing
或query
进行过滤,然后groupby
使用DataFrameGroupBy.ffill
进行过滤,如果{1}}值始终位于第一行每组:
-1
如果df['RES_J-1'] = df.query('J_X == -1')['RES_HOLD_IND']
#alternative
#df['RES_J-1'] = df.loc[df['J_X'] == -1, 'RES_HOLD_IND']
df['RES_J-1'] = df.groupby(['DPT_DATE','TRAIN_NO'])['RES_J-1'].ffill()
print (df)
DPT_DATE TRANCHE_NO TRAIN_NO J_X RES_HOLD_IND RES_J-1
0 2017-04-01 330.0 1234.0 -1.0 100.0 100.0
1 2017-04-01 330.0 1234.0 0.0 80.0 100.0
2 2017-04-02 331.0 1235.0 -1.0 91.0 91.0
3 2017-04-02 331.0 1235.0 0.0 83.0 91.0
4 2017-04-03 332.0 1236.0 -1.0 92.0 92.0
5 2017-04-03 332.0 1236.0 0.0 81.0 92.0
6 2017-04-04 333.0 1237.0 -1.0 87.0 87.0
7 2017-04-04 333.0 1237.0 0.0 70.0 87.0
8 2017-04-05 334.0 1238.0 -1.0 93.0 93.0
9 2017-04-05 334.0 1238.0 0.0 90.0 93.0
10 2017-04-06 335.0 1239.0 -1.0 89.0 89.0
11 2017-04-06 335.0 1239.0 0.0 85.0 89.0
12 2017-04-07 336.0 1240.0 -1.0 82.0 82.0
13 2017-04-07 336.0 1240.0 0.0 76.0 82.0
每组只有一个,但并非总是先使用:
-1