如何在整个工作表中找到每个索引的多个工作表中的最小值
假设,
worksheet 1
index A B C
0 2 3 4.28
1 3 4 5.23
worksheet 2
index A B C
0 9 6 5.9
1 1 3 4.1
worksheet 3
index A B C
0 9 6 6.0
1 1 3 4.3
...................(Worksheet 4,Worksheet 5)...........
by comparing C column, I want an answer, where dataframe looks like
index min(c)
0 4.28
1 4.1
答案 0 :(得分:3)
from functools import reduce
reduce(np.fmin, [ws1.C, ws2.C, ws3.C])
index
0 4.28
1 4.10
Name: C, dtype: float64
这很好地概括了理解
reduce(np.fmin, [w.C for w in [ws1, ws2, ws3, ws4, ws5]])
如果您必须坚持您的专栏名称
from functools import reduce
reduce(np.fmin, [ws1.C, ws2.C, ws3.C]).to_frame('min(C)')
min(C)
index
0 4.28
1 4.10
您还可以在字典上使用pd.concat
并将pd.Series.min
与level=1
参数一起使用
pd.concat(dict(enumerate([w.C for w in [ws1, ws2, ws3]]))).min(level=1)
# equivalently
# pd.concat(dict(enumerate([w.C for w in [ws1, ws2, ws3]])), axis=1).min(1)
index
0 4.28
1 4.10
Name: C, dtype: float64
注意:
dict(enumerate([w.C for w in [ws1, ws2, ws3]]))
是另一种说法
{0: ws1.C, 1: ws2.C, 2: ws3.C}
答案 1 :(得分:3)
您需要read_excel
sheetname=None
OrderedDict
reduce
来自all sheetnames,然后将dfs = pd.read_excel('file.xlsx', sheetname=None)
print (dfs)
OrderedDict([('Sheet1', A B C
0 2 3 4.28
1 3 4 5.23), ('Sheet2', A B C
0 9 6 5.9
1 1 3 4.1), ('Sheet3', A B C
0 9 6 6.0
1 1 3 4.3)])
from functools import reduce
df = reduce(np.fmin, [v['C'] for k,v in dfs.items()])
print (df)
0 4.28
1 4.10
Name: C, dtype: float64
列为numpy.fmin
列表:
df = pd.concat([v['C'] for k,v in dfs.items()],axis=1).min(axis=1)
print (df)
0 4.28
1 4.10
dtype: float64
concat
的解决方案:
read_excel
如果需要在dfs = pd.read_excel('file.xlsx', sheetname=None, index_col='index')
print (dfs)
OrderedDict([('Sheet1', A B C
index
0 2 3 4.28
1 3 4 5.23), ('Sheet2', A B C
index
0 9 6 5.9
1 1 3 4.1), ('Sheet3', A B C
index
0 9 6 6.0
1 1 3 4.3)])
df = pd.concat([v['C'] for k,v in dfs.items()], axis=1).min(axis=1)
print (df)
index
0 4.28
1 4.10
dtype: float64
中定义索引:
coords(coords(:,2)<1,2)=1;