我使用TFRecord输入管道训练了一个网络。换句话说,没有占位符。简单的例子是:
input, truth = _get_next_batch() # TFRecord. `input` is not a tf.placeholder
net = Model(input)
net.set_loss(truth)
optimizer = tf...(net.loss)
我们说,我获得了三个文件ckpt-20000.meta
,ckpt-20000.data-0000-of-0001
,ckpt-20000.index
。我明白,以后可以使用.meta
文件导入元图并访问张量,例如:
new_saver = tf.train.import_meta_graph('ckpt-20000.meta')
new_saver.restore(sess, 'ckpt-20000')
logits = tf.get_collection("logits")[0]
但是,元图在管道中从一开始就没有占位符。有没有办法可以使用元图和输入的查询推理?
有关信息,在查询应用程序(或脚本)中,我曾经使用占位符和恢复的模型权重定义模型(参见下文)。我想知道我是否可以在没有重新定义的情况下使用元图,因为它会更加简单。
input = tf.placeholder(...)
net = Model(input)
tf.restore(sess, 'ckpt-2000')
lgt = sess.run(net.logits, feed_dict = {input:img})
答案 0 :(得分:9)
您可以构建一个使用placeholder_with_default()
作为输入的图表,因此可以同时使用TFRecord input pipeline
和feed_dict{}
。
一个例子:
input, truth = _get_next_batch()
_x = tf.placeholder_with_default(input, shape=[...], name='input')
_y = tf.placeholder_with_default(truth, shape-[...], name='label')
net = Model(_x)
net.set_loss(_y)
optimizer = tf...(net.loss)
然后在推理期间,
loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
new_saver = tf.train.import_meta_graph('ckpt-20000.meta')
new_saver.restore(sess, 'ckpt-20000')
# Get the tensors by their variable name
input = loaded_graph.get_tensor_by_name('input:0')
logits = loaded_graph.get_tensor_by_name(...)
# Now you can feed the inputs to your tensors
lgt = sess.run(logits, feed_dict = {input:img})
在上面的示例中,如果您没有输入输入,则输入将从TFRecord input pipeline
读取。
答案 1 :(得分:4)
有没有办法在没有占位符的情况下进行测试?应该可以使用新的输入管道重新使用图形而不需要使用慢占位符(即测试数据集可能非常大)。在这种情况下,placeholder_with_default
是次优解决方案。
答案 2 :(得分:0)
推荐的方法是保存两个元图。一个用于培训/验证/测试,另一个用于推理。
export_dir = ...
...
builder = tf.saved_model_builder.SavedModelBuilder(export_dir)
with tf.Session(graph=tf.Graph()) as sess:
...
builder.add_meta_graph_and_variables(sess,
[tag_constants.TRAINING],
signature_def_map=foo_signatures,
assets_collection=foo_assets)
...
# Add a second MetaGraphDef for inference.
with tf.Session(graph=tf.Graph()) as sess:
...
builder.add_meta_graph([tag_constants.SERVING])
...
builder.save()
NMT教程还提供了有关使用共享变量创建多个图形的详细示例:Neural Machine Translation (seq2seq) Tutorial-Building Training, Eval, and Inference Graphs
train_graph = tf.Graph()
eval_graph = tf.Graph()
infer_graph = tf.Graph()
with train_graph.as_default():
train_iterator = ...
train_model = BuildTrainModel(train_iterator)
initializer = tf.global_variables_initializer()
with eval_graph.as_default():
eval_iterator = ...
eval_model = BuildEvalModel(eval_iterator)
with infer_graph.as_default():
infer_iterator, infer_inputs = ...
infer_model = BuildInferenceModel(infer_iterator)
checkpoints_path = "/tmp/model/checkpoints"
train_sess = tf.Session(graph=train_graph)
eval_sess = tf.Session(graph=eval_graph)
infer_sess = tf.Session(graph=infer_graph)
train_sess.run(initializer)
train_sess.run(train_iterator.initializer)
for i in itertools.count():
train_model.train(train_sess)
if i % EVAL_STEPS == 0:
checkpoint_path = train_model.saver.save(train_sess, checkpoints_path, global_step=i)
eval_model.saver.restore(eval_sess, checkpoint_path)
eval_sess.run(eval_iterator.initializer)
while data_to_eval:
eval_model.eval(eval_sess)
if i % INFER_STEPS == 0:
checkpoint_path = train_model.saver.save(train_sess, checkpoints_path, global_step=i)
infer_model.saver.restore(infer_sess, checkpoint_path)
infer_sess.run(infer_iterator.initializer, feed_dict={infer_inputs: infer_input_data})
while data_to_infer:
infer_model.infer(infer_sess)