我有两个具有相同索引和列名的DatetimeIndexed DataFrame。每个大约826万行和44列,DataFrames连接,然后groupby应用10分钟的时间间隔,给出大约6884组。然后迭代匹配的列对,为每个组和列对返回单个值。
下面的解决方案可以在Xeon E5-2697 v3上运行34分钟,并且所有DataFrame都可以放入内存中。
我认为应该有一种更有效的方法来计算两个DataFrame,也许使用Dask?
虽然我不清楚如何为Dask DataFrame执行基于时间的groupby。
def circular_mean(burst_veldirection, burst_velspeed):
x = y = 0.
for angle, weight in zip(burst_veldirection.values, burst_velspeed.values):
x += math.cos(math.radians(angle)) * weight
y += math.sin(math.radians(angle)) * weight
mean = math.degrees(math.atan2(y, x))
if mean < 0:
mean = 360 + mean
return mean
def circ_mean(df):
results = []
for x in range(0,45):
results.append(circular_mean(df[str(x)], df[str(x) + 'velspeed']))
return results
burst_veldirection_velspeed = burst_veldirection.join(burst_velspeed, rsuffix='velspeed')
result = burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean)
Example short HDF file containing包含23分钟的前10,000条记录
答案 0 :(得分:2)
这不会让你远离groupby
,但只是转移到numpy函数,从完成所有元素后,我的速度提升了大约8倍。
def circ_mean2(df):
df2 = df.iloc[:, 45:].copy()
df1 = df.iloc[:, :45].copy()
x = np.sum(np.cos(np.radians(df1.values))*df2.values, axis=0)
y = np.sum(np.sin(np.radians(df1.values))*df2.values, axis=0)
arctan = np.degrees(np.arctan2(y, x))
return np.where(arctan>0, arctan, arctan+360).tolist()
100行(随机数据)的比较:
burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean)
Out[546]:
2017-01-01 00:00:00 [107.1417250368678, 256.8946560151866, 213.146...
2017-01-01 00:10:00 [26.33395947005812, 27.786466256197127, 94.898...
2017-01-01 00:20:00 [212.56183600787307, 284.77924347375733, 241.7...
2017-01-01 00:30:00 [302.1659401891579, 91.1768853178421, 194.9664...
2017-01-01 00:40:00 [90.29680187822757, 337.4345622590224, 302.219...
2017-01-01 00:50:00 [94.88722975883893, 319.5580499260627, 204.511...
2017-01-01 01:00:00 [133.4980653288851, 55.16669017531442, 20.7527...
2017-01-01 01:10:00 [356.67045637546113, 151.25258425458003, 200.1...
2017-01-01 01:20:00 [350.2489907863962, 33.284286840600046, 145.66...
2017-01-01 01:30:00 [135.74199444105565, 62.66259615135012, 257.80...
Freq: 10T, dtype: object
burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean2)
Out[547]:
2017-01-01 00:00:00 [107.1417236328125, 256.8946533203125, 213.146...
2017-01-01 00:10:00 [26.333953857421875, 27.78646469116211, 94.898...
2017-01-01 00:20:00 [212.5618438720703, 284.77923583984375, 241.72...
2017-01-01 00:30:00 [302.16595458984375, 91.1768798828125, 194.966...
2017-01-01 00:40:00 [90.29680633544922, 337.4345703125, 302.219909...
2017-01-01 00:50:00 [94.88722229003906, 319.55804443359375, 204.51...
2017-01-01 01:00:00 [133.498046875, 55.166690826416016, 20.7527561...
2017-01-01 01:10:00 [356.6704406738281, 151.25257873535156, 200.13...
2017-01-01 01:20:00 [350.2489929199219, 33.2842903137207, 145.6609...
2017-01-01 01:30:00 [135.7419891357422, 62.66258239746094, 257.807...
Freq: 10T, dtype: object
%timeit burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean)
10 loops, best of 3: 80.3 ms per loop
%timeit burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean2)
10 loops, best of 3: 10.4 ms per loop
在10,000:
%timeit burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean)
1 loop, best of 3: 6.65 s per loop
%timeit burst_veldirection_velspeed.groupby(pd.TimeGrouper(freq='10Min')).apply(circ_mean2)
1 loop, best of 3: 709 ms per loop