如何比较大熊猫Dataframe的聚合部分?

时间:2017-06-26 11:45:08

标签: python r python-3.x pandas dataframe

是否可以比较pandas Dataframe中的部分列?我有以下Dataframe示例,其中保存了4种语言(en,de,nl,ua),并且每种语言应该具有相同的键/相同数量的键,但具有不同的值(将静态列保留在那里)完成,因为我有一个静态列,其值始终保持不变)。

static  │ langs   │ keys   │ values

x       │ en      │ key_1  │ value_en_1
x       │ en      │ key_2  │ value_en_2
x       │ en      │ key_3  │ value_en_3
x       │ de      │ key_1  │ value_de_1
x       │ de      │ key_2  │ value_de_2
x       │ de      │ key_3  │ value_de_3
x       │ nl      │ key_1  │ value_nl_1
x       │ nl      │ key_2  │ value_nl_2
x       │ ua      │ key_1  │ value_ua_1

我需要检查哪些键和每种语言丢失了多少与英语版本相比(这里的'en'),所以这样的东西将是一个理想的输出:

│ Lang │ Static   │ # Missing │ Keys          │ 
│ de   │ x        │ 0         │               │ 
│ nl   │ x        │ 1         │ key_3         │ 
│ ua   │ x        │ 2         │ key_2, key_3  │

这是我目前的进展:

import pandas as pd

# this is read from a csv, but I'll leave it as list of lists for simplicity
rows = [
    ['x', 'en', 'key_1', 'value_en_1'],
    ['x', 'en', 'key_2', 'value_en_2'],
    ['x', 'en', 'key_3', 'value_en_3'],
    ['x', 'de', 'key_1', 'value_de_1'],
    ['x', 'de', 'key_2', 'value_de_2'],
    ['x', 'de', 'key_3', 'value_de_3'],
    ['x', 'nl', 'key_1', 'value_nl_1'],
    ['x', 'nl', 'key_2', 'value_nl_2'],
    ['x', 'ua', 'key_1', 'value_en_1']
]

# create DataFrame out of rows of data
df = pd.DataFrame(rows, columns=["static", "language", "keys", "values"])
# print out DataFrame
print("Dataframe: ", df)

# first group by language and the static column
df_grp = df.groupby(["static", "language"])

# try to sum the number of keys and values per each language
df_summ = df_grp.agg(["count"])

# print out the sums
print()
print(df_summ)

# how to compare?
# how to get the keys?

这是df_summ的输出:

                 keys values
                count  count
static language             
x      de           3      3
       en           3      3
       nl           2      2
       ua           1      1

此时我不知道该怎么办。我很感激任何帮助/提示。

P.S。这是在Python 3.5上。

4 个答案:

答案 0 :(得分:3)

编辑:

#get set per groups by static and language
a = df.groupby(["static",'language'])['keys'].apply(set).reset_index()
#filter only en language per group by static and create set
b = df[df['language'] == 'en'].groupby("static")['keys'].apply(set)
#subtract mapped set b and join
c = (a['static'].map(b) -  a['keys']).str.join(', ').rename('Keys')
#substract lengths
m = (a['static'].map(b).str.len() - a['keys'].str.len()).rename('Missing')

df = pd.concat([a[['static','language']], m, c], axis=1)
print (df)
  static language  Missing          Keys
0      x       de        0              
1      x       en        0              
2      x       nl        1         key_3
3      x       ua        2  key_3, key_2

编辑:

我尝试更改数据:

rows = [
    ['x', 'en', 'key_1', 'value_en_1'],
    ['x', 'en', 'key_2', 'value_en_2'],
    ['x', 'en', 'key_3', 'value_en_3'],
    ['x', 'de', 'key_1', 'value_de_1'],
    ['x', 'de', 'key_2', 'value_de_2'],
    ['x', 'de', 'key_3', 'value_de_3'],
    ['x', 'nl', 'key_1', 'value_nl_1'],
    ['x', 'nl', 'key_2', 'value_nl_2'],
    ['x', 'ua', 'key_1', 'value_en_1'],
    ['y', 'en', 'key_1', 'value_en_1'],
    ['y', 'en', 'key_2', 'value_en_2'],
    ['y', 'de', 'key_4', 'value_en_3'],
    ['y', 'de', 'key_1', 'value_de_1'],
    ['y', 'de', 'key_2', 'value_de_2'],
    ['y', 'de', 'key_3', 'value_de_3'],
    ['y', 'de', 'key_5', 'value_nl_1'],
    ['y', 'nl', 'key_2', 'value_nl_2'],
    ['y', 'ua', 'key_1', 'value_en_1']
]

# create DataFrame out of rows of data
df = pd.DataFrame(rows, columns=["static", "language", "keys", "values"])
# print out DataFrame
#print(df)

,输出为:

print (df)
  static language  Missing          Keys
0      x       de        0              
1      x       en        0              
2      x       nl        1         key_3
3      x       ua        2  key_3, key_2
4      y       de       -3              
5      y       en        0              
6      y       nl        1         key_1
7      y       ua        1         key_2

问题适用于de y静态,因为en语言中有更多键。

答案 1 :(得分:1)

您可以先通过分组和计算nans数来创建缺失的列。然后创建keys列并添加静态列。

df2 = (
    df.groupby('langs')['keys'].apply(lambda x: x.values)
      .apply(pd.Series)
      .assign(Missing=lambda x: x.isnull().sum(axis=1))
)

(
    df2[['Missing']].assign(static=df.static.iloc[0],
                            Keys=df2.apply(lambda x: ','.join(df2.loc['en'].loc[x.isnull()]),axis=1))    
)

Out[44]: 
       Missing         Keys static
langs                             
de           0                   x
en           0                   x
nl           1        key_3      x
ua           2  key_2,key_3      x

答案 2 :(得分:1)

# First we group with `language` and aggregate `static` with `min` (it's always the same anyway)
# and `keys` with a lambda function that creates a `set`.
In [2]: grouped = df.groupby('language').agg({'static': 'min', 'keys': lambda x: set(x)})

# Then we get the missing keys...
In [3]: missing = (grouped['keys']['en'] - grouped['keys'])

# ... and count them
In [4]: missing_counts = missing.apply(len).rename('# Missing')

# Then we join all of this together and replace the keys with a joined string.
In [5]: grouped.drop('keys', axis=1).join(missing_counts).join(missing.apply(', '.join)).reset_index()
Out[5]:
  language static  # Missing          keys
0       de      x          0
1       en      x          0
2       nl      x          1         key_3
3       ua      x          2  key_2, key_3

答案 3 :(得分:1)

由于您在问题中添加了R标记,因此以下是使用tidyrdplyr执行此操作的方法:

library(dplyr);library(tidyr)
df %>% 
  complete(nesting(static, langs), keys) %>%
  group_by(langs)%>%
  summarise(Static=max(static),
            Missing=sum(is.na(values)),
            Keys=toString(keys[is.na(values)])
            )

  langs Static Missing         Keys
  <chr>  <chr>   <int>        <chr>
1    de      x       0             
2    en      x       0             
3    nl      x       1        key_3
4    ua      x       2 key_2, key_3

数据

df <- read.table(text="static   langs    keys    values
'x' 'en' 'key_1' 'value_en_1'
'x' 'en' 'key_2' 'value_en_2'
'x' 'en' 'key_3' 'value_en_3'
'x' 'de' 'key_1' 'value_de_1'
'x' 'de' 'key_2' 'value_de_2'
'x' 'de' 'key_3' 'value_de_3'
'x' 'nl' 'key_1' 'value_nl_1'
'x' 'nl' 'key_2' 'value_nl_2'
'x' 'ua' 'key_1' 'value_en_1'",header=TRUE,stringsAsFactors = FALSE)