我有我预测的时间序列数据,因此我创建滞后变量以用于我的统计分析。我想在给定特定输入的情况下快速创建多个变量,以便我可以轻松地交叉验证和比较模型。
以下是给定特定类别(A,B,C)的2个不同变量(共4个)增加2个滞后的示例代码:
# Load dplyr
library(dplyr)
# create day, category, and 2 value vectors
days = 1:9
cats = rep(c('A','B','C'),3)
set.seed = 19
values1 = round(rnorm(9, 16, 4))
values2 = round(rnorm(9, 16, 16))
# create data frame
data = data.frame(days, cats, values1, values2)
# mutate new lag variables
LagVal = data %>% arrange(days) %>% group_by(cats) %>%
mutate(LagVal1.1 = lag(values1, 1)) %>%
mutate(LagVal1.2 = lag(values1, 2)) %>%
mutate(LagVal2.1 = lag(values2, 1)) %>%
mutate(LagVal2.2 = lag(values2, 2))
LagVal
days cats values1 values2 LagVal1.1 LagVal1.2 LagVal2.1 LagVal2.2
<int> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 A 16 -10 NA NA NA NA
2 2 B 14 24 NA NA NA NA
3 3 C 16 -6 NA NA NA NA
4 4 A 12 25 16 NA -10 NA
5 5 B 20 14 14 NA 24 NA
6 6 C 18 -5 16 NA -6 NA
7 7 A 21 2 12 16 25 -10
8 8 B 19 5 20 14 14 24
9 9 C 18 -3 18 16 -5 -6
我的问题出现在# mutate new lag variables
步骤,因为我有大约十二个预测变量,我可能想要滞后10倍(~13k行数据集),而且我没有创造120个新变量的核心。
这是我尝试编写一个函数,它根据data
(数据集变异),variables
(你想要滞后的变量)和lags
的输入改变新变量。 (每个变量的滞后数):
MultiMutate = function(data, variables, lags){
# select the data to be working with
FuncData = data
# Loop through desired variables to mutate
for (i in variables){
# Loop through number of desired lags
for (u in 1:lags){
FuncData = FuncData %>% arrange(days) %>% group_by(cats) %>%
# Mutate new variable for desired number of lags. Give new variable a name with the lag number appended
mutate(paste(i, u) = lag(i, u))
}
}
FuncData
}
说实话,我对如何让它发挥作用感到很遗憾。我的for循环和整体逻辑的排序是有意义的,但函数将字符转换为变量的方式和整体语法似乎有点偏离。有没有一种简单的方法来修复此功能以获得我想要的结果?
特别是,我正在寻找:
像MultiMutate(data = data, variables = c(values1, values2), lags = 2)
这样的函数可以从上面创建LagVal
的确切结果。
根据变量及其滞后动态命名变量。即value1.1,value1.2,value2.1,value2.2等
提前感谢您,如果您需要其他信息,请与我们联系。如果有一种更简单的方式来获得我想要的东西,那么我全都耳朵。
答案 0 :(得分:7)
您必须深入了解tidyverse工具箱才能一次性添加它们。如果为cats
的每个值嵌套数据,则可以迭代嵌套数据框,迭代每个values*
列的滞后。
library(tidyverse)
set.seed(47)
df <- data_frame(days = 1:9,
cats = rep(c('A','B','C'),3),
values1 = round(rnorm(9, 16, 4)),
values2 = round(rnorm(9, 16, 16)))
df %>% nest(-cats) %>%
mutate(lags = map(data, function(dat) {
imap_dfc(dat[-1], ~set_names(map(1:2, lag, x = .x),
paste0(.y, '_lag', 1:2)))
})) %>%
unnest() %>%
arrange(days)
#> # A tibble: 9 x 8
#> cats days values1 values2 values1_lag1 values1_lag2 values2_lag1
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 A 1 24. -7. NA NA NA
#> 2 B 2 19. 1. NA NA NA
#> 3 C 3 17. 17. NA NA NA
#> 4 A 4 15. 24. 24. NA -7.
#> 5 B 5 16. -13. 19. NA 1.
#> 6 C 6 12. 17. 17. NA 17.
#> 7 A 7 12. 27. 15. 24. 24.
#> 8 B 8 16. 15. 16. 19. -13.
#> 9 C 9 15. 36. 12. 17. 17.
#> # ... with 1 more variable: values2_lag2 <dbl>
data.table::shift
使这更简单,因为它是矢量化的。命名比实际滞后需要更多的工作:
library(data.table)
setDT(df)
df[, sapply(1:2, function(x){paste0('values', x, '_lag', 1:2)}) := shift(.SD, 1:2),
by = cats, .SDcols = values1:values2][]
#> days cats values1 values2 values1_lag1 values1_lag2 values2_lag1
#> 1: 1 A 24 -7 NA NA NA
#> 2: 2 B 19 1 NA NA NA
#> 3: 3 C 17 17 NA NA NA
#> 4: 4 A 15 24 24 NA -7
#> 5: 5 B 16 -13 19 NA 1
#> 6: 6 C 12 17 17 NA 17
#> 7: 7 A 12 27 15 24 24
#> 8: 8 B 16 15 16 19 -13
#> 9: 9 C 15 36 12 17 17
#> values2_lag2
#> 1: NA
#> 2: NA
#> 3: NA
#> 4: NA
#> 5: NA
#> 6: NA
#> 7: -7
#> 8: 1
#> 9: 17
答案 1 :(得分:3)
在这些情况下,我依靠dplyr
和tidyr
的魔力:
library(dplyr)
library(tidyr)
set.seed(47)
# create data
s_data = data_frame(
days = 1:9,
cats = rep(c('A', 'B', 'C'), 3),
values1 = round(rnorm(9, 16, 4)),
values2 = round(rnorm(9, 16, 16))
)
max_lag = 2 # define max number of lags
# create lags
s_data %>%
gather(select = -c("days", "cats")) %>% # gather all variables that will be lagged
mutate(n_lag = list(0:max_lag)) %>% # add list-column with lag numbers
unnest() %>% # unnest the list column
arrange(cats, key, n_lag, days) %>% # order the data.frame
group_by(cats, key, n_lag) %>% # group by relevant variables
# create lag. when grouped by vars above, n_lag is a constant vector, take 1st value
mutate(lag_val = lag(value, n_lag[1])) %>%
ungroup() %>%
# create some fancy labels
mutate(var_name = ifelse(n_lag == 0, key, paste0("Lag", key, ".", n_lag))) %>%
select(-c(key, value, n_lag)) %>% # drop unnecesary data
spread(var_name, lag_val) %>% # spread your newly created variables
select(days, cats, starts_with("val"), starts_with("Lag")) # reorder
## # A tibble: 9 x 8
## days cats values1 values2 Lagvalues1.1 Lagvalues1.2 Lagvalues2.1 Lagvalues2.2
## <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 A 24. -7. NA NA NA NA
## 2 2 B 19. 1. NA NA NA NA
## 3 3 C 17. 17. NA NA NA NA
## 4 4 A 15. 24. 24. NA -7. NA
## 5 5 B 16. -13. 19. NA 1. NA
## 6 6 C 12. 17. 17. NA 17. NA
## 7 7 A 12. 27. 15. 24. 24. -7.
## 8 8 B 16. 15. 16. 19. -13. 1.
## 9 9 C 15. 36. 12. 17. 17. 17.