我正在尝试创建一个Shiny应用程序来探索具有4个变量/列(A,B,C,D)和10,000行的数据框。有一个输入字段,用户必须在其中选择4个变量/列中的2个。一旦他们这样做了,那么右边会显示一个散点图。散点图是一个Plotly对象,带有六边形分箱,汇总了两个用户选择的变量/列之间10,000行的值。
此时,用户可以选择“开始!”按钮,它使与这2个变量/列的第一行对应的橙色点叠加到Plotly对象上。用户可以按顺序选择“开始!”然后对应于第二,第三,第四等行的橙色点将叠加到Plotly对象上。行ID的名称输出在散点图矩阵上方。
在大多数情况下,应用程序正在运行。我只想改进两件事:
1)我希望用户能够在输入字段中选择新对。这在很大程度上起作用。但是,有一种特殊情况会导致应用程序突然关闭。它发生在橙色点叠加到散点图上之后。如果用户随后擦除了两个输入对,则应用程序突然关闭。我希望用户能够擦除两个输入对值并输入两个新的对值,即使在将橙色点绘制到散点图之后,应用程序也不会关闭。
2)我注意到在绘制橙色点后行ID的输出略有滞后。我想知道为什么会发生这种情况,因为我在绘制脚本中的橙色点之前输出行ID。我希望有更少的滞后,但不确定如何处理。
如何解决这两个问题中的任何一个的任何建议将不胜感激!我的MWE显示了这个问题如下。
library(plotly)
library(GGally)
library(hexbin)
library(htmlwidgets)
library(tidyr)
library(shiny)
library(dplyr)
library(data.table)
library(ggplot2)
library(tibble)
myPairs <- c("A", "B", "C", "D")
ui <- shinyUI(fluidPage(
titlePanel("title panel"),
sidebarLayout(position = "left",
sidebarPanel(
selectizeInput("selPair", "Pairs:", choices = myPairs, multiple = TRUE, options = list(maxItems = 2)),
actionButton("goButton", "Go!"),
width = 3
),
mainPanel(
verbatimTextOutput("info"),
plotlyOutput("scatMatPlot")
)
)
))
server <- shinyServer(function(input, output, session) {
# Create data and subsets of data based on user selection of pairs
dat <- data.frame(ID = paste0("ID", 1:10000), A = rnorm(10000), B = rnorm(10000), C = rnorm(10000), D = rnorm(10000))
pairNum <- reactive(input$selPair)
group1 <- reactive(pairNum()[1])
group2 <- reactive(pairNum()[2])
sampleIndex <- reactive(which(colnames(dat) %in% c(group1(), group2())))
# Create data subset based on two letters user chooses
datSel <- eventReactive(sampleIndex(), {
datSel <- dat[, c(1, sampleIndex())]
datSel$ID <- as.character(datSel$ID)
datSel <- as.data.frame(datSel)
datSel
})
sampleIndex1 <- reactive(which(colnames(datSel()) %in% c(group1())))
sampleIndex2 <- reactive(which(colnames(datSel()) %in% c(group2())))
# Create background Plotly graph with hex binning all 100 rows of the two user-selected columns
ggPS <- eventReactive(datSel(), {
minVal = min(datSel()[,-1])
maxVal = max(datSel()[,-1])
maxRange = c(minVal, maxVal)
xbins=7
buffer = (maxRange[2]-maxRange[1])/xbins/2
x = unlist(datSel()[,(sampleIndex1())])
y = unlist(datSel()[,(sampleIndex2())])
h <- hexbin(x=x, y=y, xbins=xbins, shape=1, IDs=TRUE, xbnds=maxRange, ybnds=maxRange)
hexdf <- data.frame (hcell2xy (h), hexID = h@cell, counts = h@count)
attr(hexdf, "cID") <- h@cID
p <- ggplot(hexdf, aes(x=x, y=y, fill = counts, hexID=hexID)) + geom_hex(stat="identity") + geom_abline(intercept = 0, color = "red", size = 0.25) + coord_cartesian(xlim = c(maxRange[1]-1*buffer, maxRange[2]+buffer), ylim = c(maxRange[1]-1*buffer, maxRange[2]+buffer)) + coord_equal(ratio=1) + labs(x = colnames(datSel()[sampleIndex1()]), y = colnames(datSel()[sampleIndex2()]))
ggPS <- ggplotly(p)
ggPS})
# Output hex bin plot created just above
output$scatMatPlot <- renderPlotly({
# Each time user pushes Go! button, the next row of the data frame is selected
datInput <- eventReactive(input$goButton, {
g <- datSel()$ID[input$goButton]
# Output ID of selected row
output$info <- renderPrint({
g
})
# Get x and y values of seleced row
currGene <- datSel()[which(datSel()$ID==g),]
currGene1 <- unname(unlist(currGene[,sampleIndex1()]))
currGene2 <- unname(unlist(currGene[,sampleIndex2()]))
c(currGene1, currGene2)
})
# Send x and y values of selected row into onRender() function
observe({
session$sendCustomMessage(type = "points", datInput())
})
# Use onRender() function to draw x and y values of seleced row as orange point
ggPS() %>% onRender("
function(el, x, data) {
noPoint = x.data.length;
Shiny.addCustomMessageHandler('points', function(drawPoints) {
if (x.data.length > noPoint){
Plotly.deleteTraces(el.id, x.data.length-1);
}
var Traces = [];
var trace = {
x: drawPoints.slice(0, drawPoints.length/2),
y: drawPoints.slice(drawPoints.length/2, drawPoints.length),
mode: 'markers',
marker: {
color: 'orange',
size: 7
},
hoverinfo: 'none'
};
Traces.push(trace);
Plotly.addTraces(el.id, Traces);
});}")
})
})
shinyApp(ui, server)
答案 0 :(得分:1)
正如@HubertL所提到的,避免嵌套反应函数会更好。如果你改变它,你的应用程序可能会更顺畅地运行。
关于您的第一个问题,req
和validate
可能是最好的方法。这些函数检查用户输入是否有效并处理无效输入。
我已经根据这些规则对您的代码进行了一些调整,但您仍然可以更改它。如果您仔细查看ggPS
,可能会发现它只使用datSel()
,因此您可以将其转换为函数。
library(plotly)
library(GGally)
library(hexbin)
library(htmlwidgets)
library(tidyr)
library(shiny)
library(dplyr)
library(data.table)
library(ggplot2)
library(tibble)
myPairs <- c("A", "B", "C", "D")
ui <- shinyUI(fluidPage(
titlePanel("title panel"),
sidebarLayout(
position = "left",
sidebarPanel(
selectizeInput("selPair", "Pairs:", choices = myPairs, multiple = TRUE,
options = list(maxItems = 2)),
actionButton("goButton", "Go!"),
width = 3
),
mainPanel(
verbatimTextOutput("info"),
plotlyOutput("scatMatPlot")
)
)
))
server <- shinyServer(function(input, output, session) {
# Create data and subsets of data based on user selection of pairs
dat <- data.frame(
ID = paste0("ID", 1:10000), A = rnorm(10000),
B = rnorm(10000), C = rnorm(10000), D = rnorm(10000),
stringsAsFactors = FALSE
)
# Create data subset based on two letters user chooses
datSel <- eventReactive(input$selPair, {
validate(need(length(input$selPair) == 2, "Select a pair."))
dat[c("ID", input$selPair)]
}, ignoreNULL = FALSE)
# Create background Plotly graph with hex binning all 100 rows of the two user-selected columns
ggPS <- eventReactive(datSel(), {
minVal = min(datSel()[,-1])
maxVal = max(datSel()[,-1])
maxRange = c(minVal, maxVal)
xbins=7
buffer = (maxRange[2]-maxRange[1])/xbins/2
x = unlist(datSel()[input$selPair[1]])
y = unlist(datSel()[input$selPair[2]])
h <- hexbin(x=x, y=y, xbins=xbins, shape=1, IDs=TRUE,
xbnds=maxRange, ybnds=maxRange)
hexdf <- data.frame (hcell2xy (h), hexID = h@cell, counts = h@count)
attr(hexdf, "cID") <- h@cID
p <- ggplot(hexdf, aes(x=x, y=y, fill = counts, hexID=hexID)) +
geom_hex(stat="identity") + geom_abline(intercept = 0, color = "red", size = 0.25) +
coord_cartesian(xlim = c(maxRange[1]-1*buffer, maxRange[2]+buffer),
ylim = c(maxRange[1]-1*buffer, maxRange[2]+buffer)) +
coord_equal(ratio = 1) +
labs(x = input$selPair[1], y = input$selPair[2])
ggPS <- ggplotly(p)
ggPS
})
# Output ID of selected row
output$info <- renderPrint({ datSel()$ID[req(input$goButton)] })
# Output hex bin plot created just above
output$scatMatPlot <- renderPlotly({
# Use onRender() function to draw x and y values of seleced row as orange point
ggPS() %>% onRender("
function(el, x, data) {
noPoint = x.data.length;
Shiny.addCustomMessageHandler('points', function(drawPoints) {
if (x.data.length > noPoint){
Plotly.deleteTraces(el.id, x.data.length-1);
}
var Traces = [];
var trace = {
x: drawPoints.slice(0, drawPoints.length/2),
y: drawPoints.slice(drawPoints.length/2, drawPoints.length),
mode: 'markers',
marker: {
color: 'orange',
size: 7
},
hoverinfo: 'none'
};
Traces.push(trace);
Plotly.addTraces(el.id, Traces);
});}")
})
observe({
# Get x and y values of seleced row
currGene <- datSel()[input$goButton, -1]
# Send x and y values of selected row into onRender() function
session$sendCustomMessage(type = "points", unname(unlist(currGene)))
})
})
shinyApp(ui, server)