我有一个包含以下架构和数据示例的CSV文件:
userId,movieId,tag,timestamp
28,63062,angelina jolie,1263047558
我有以下代码来阅读此文件。
import org.apache.spark.sql.types._
val inputPath = "FileStore/tables/o8pa07nd1495067426592/tags.csv"
val customSchema = StructType(Array(
StructField("userId", StringType, true),
StructField("movieId", StringType, true),
StructField("tag", StringType, true),
StructField("timestamp", TimestampType, true)))
val df = spark.read
.format("com.databricks.spark.csv")
.option("header", "true") // Use first line of all files as header
.schema(customSchema)
.load(inputPath)
我有以下代码从dataframe
df.select($"timestamp", $"tag").show(10)
然而,java.lang.IllegalArgumentException
在CustomSchema
中,如果我将类型从TimestampType更改为LongType,则可以正常工作。但是,我想将该列读作Timestamp。我怎么能这样做?
这是完整的错误日志
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.lang.IllegalArgumentException
at java.sql.Date.valueOf(Date.java:143)
at org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:137)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply$mcJ$sp(CSVInferSchema.scala:283)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:283)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:283)
at scala.util.Try.getOrElse(Try.scala:77)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$.castTo(CSVInferSchema.scala:280)
at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:125)
at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:94)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:173)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:172)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anonfun$prepareNextFile$1.apply(FileScanRDD.scala:235)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anonfun$prepareNextFile$1.apply(FileScanRDD.scala:217)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1430)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1429)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1429)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:803)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1657)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1612)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1601)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1937)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1950)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1963)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset$$anonfun$7.apply(Dataset.scala:252)
at org.apache.spark.sql.Dataset$$anonfun$7.apply(Dataset.scala:248)
at org.apache.spark.sql.Dataset$$anonfun$60.apply(Dataset.scala:2791)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:87)
at org.apache.spark.sql.execution.SQLExecution$.withFileAccessAudit(SQLExecution.scala:53)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:70)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2790)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
at org.apache.spark.sql.Dataset.show(Dataset.scala:643)
at org.apache.spark.sql.Dataset.show(Dataset.scala:602)
Caused by: java.lang.IllegalArgumentException
at java.sql.Date.valueOf(Date.java:143)
at org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:137)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply$mcJ$sp(CSVInferSchema.scala:283)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:283)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:283)
at scala.util.Try.getOrElse(Try.scala:77)
at org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$.castTo(CSVInferSchema.scala:280)
at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:125)
at org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:94)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:173)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:172)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anonfun$prepareNextFile$1.apply(FileScanRDD.scala:235)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anonfun$prepareNextFile$1.apply(FileScanRDD.scala:217)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
答案 0 :(得分:0)
如果您的时间戳记包含毫秒:
df.withColumn("time_with_ms", ($"timestamp"/1000).cast(TimestampType))
答案 1 :(得分:-1)
java.sql.Date.valueOf
将抛出IllegalArgumentException
。在您的输入示例中,您的数据看起来像是unix纪元格式。
解决此问题的一种方法是将字段读取为Long,然后自行转换为时间戳。 from_unixtime
数据包中的org.apache.spark.sql.function
是一种替代方案,或者您可以创建UDF。我建议使用from_unixtime
方法:
df.withColumn("time", from_unixtime($"timestamp"))