我有一个有问题的子图,它有两个数据量表。我想要打破轴,而不是使用对数刻度,因此子图y轴的一半从0到10,另一半从10到100。
import numpy as np
import matplotlib.pyplot as plt
x = np.random.uniform(0, 10, 40)
y = np.concatenate([np.random.uniform(0, 1, 30), np.random.uniform(0, 100, 10)])
y2 = np.random.uniform(0, 1, 40)
fig, ax = plt.subplots(2, sharex=True)
ax[0].scatter(x, y) # problematic subplot
ax[1].scatter(x, y2)
plt.show()
我试过跟随pyplot的断轴演示,虽然这似乎是错误的。我是否需要创建总共四个子图来执行此操作?这只是一个虚拟的例子,我的真正问题有几个子图,其中许多需要这些断轴。
import numpy as np
import matplotlib.pyplot as plt
x = np.random.uniform(0, 10, 40)
y = np.concatenate([np.random.uniform(0, 1, 30), np.random.uniform(0, 100, 10)])
y2 = np.random.uniform(0, 1, 40)
fig, ax = plt.subplots(4, sharex=True)
# Create broken axis with first two subplots
ax[0].scatter(x, y)
ax[1].scatter(x, y)
ax[0].set_ylim(1, 100)
ax[1].set_ylim(0, 1)
ax[0].spines['bottom'].set_visible(False)
ax[1].spines['top'].set_visible(False)
# From https://matplotlib.org/examples/pylab_examples/broken_axis.html
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax[0].transAxes, color='k', clip_on=False)
ax[0].plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax[0].plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update(transform=ax[1].transAxes) # switch to the bottom axes
ax[0].plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax[0].plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
# Try my best to fix bottom two plots so they look like one plot
ax[2].scatter(x, y2)
ax[3].scatter(x, y2)
ax[2].set_ylim(.5, 1.0)
ax[3].set_ylim(0, .5)
ax[2].spines['bottom'].set_visible(False)
ax[3].spines['top'].set_visible(False)
plt.savefig('ex.pdf')
答案 0 :(得分:2)
我可能建议只使用两个子图,一个在顶部,一个在底部。然后,通过mpl_toolkits.axes_grid1.make_axes_locatable
将上面的一个分为两个。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
x = np.random.uniform(0, 10, 40)
y = np.concatenate([np.random.uniform(0, 1, 30), np.random.uniform(0, 100, 10)])
y2 = np.random.uniform(0, 1, 40)
fig, axes = plt.subplots(nrows=2, sharex=True)
ax = axes[0]
divider = make_axes_locatable(ax)
ax2 = divider.new_vertical(size="100%", pad=0.1)
fig.add_axes(ax2)
ax.scatter(x, y)
ax.set_ylim(0, 1)
ax.spines['top'].set_visible(False)
ax2.scatter(x, y)
ax2.set_ylim(10, 100)
ax2.tick_params(bottom="off", labelbottom='off')
ax2.spines['bottom'].set_visible(False)
# From https://matplotlib.org/examples/pylab_examples/broken_axis.html
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax2.transAxes, color='k', clip_on=False)
ax2.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax2.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update(transform=ax.transAxes) # switch to the bottom axes
ax.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
#create bottom subplot as usual
axes[1].scatter(x, y2)
plt.show()