我的conv层的输出形状为(64,3,3,80),其中64是批量大小。下一层是致密的形状层(3920,4096)。如何重塑我的conv层的输出以适应我的密集层的形状?我在tensorflow中实现:) 这是密集层之前的层。
stride_conv = [1,1,1,1]
padding='SAME'
filter_3 = tf.Variable(initial_value=tf.random_normal([3,3,112,80]))
conv_3 = tf.nn.conv2d(conv_2,filter_3,stride_conv,padding)
谢谢!
答案 0 :(得分:2)
conv3 =>重塑=> FC1(720-> 4096)
[64,3,3,80] => [64,720] => [64,4096]
以下代码执行Conv to FC,如上所示:
shape = int(np.prod(conv_3.get_shape()[1:]))
conv_3_flat = tf.reshape(conv_3, [-1, shape])
fc1w = tf.Variable(tf.truncated_normal([shape, 4096],dtype=tf.float32,stddev=1e-1), name='weights')
fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
trainable=True, name='biases')
fc1 = tf.nn.bias_add(tf.matmul(conv_3_flat, fc1w), fc1b)
fc1 = tf.nn.relu(fc1)
希望这会有所帮助。
此外,简单的MNIST模型(取自此处:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py)
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out