我正在计算每行的p-value
dbinom()
或R Dataframe
data =
small Sum
2 7
3 6
5 11
我可以做的每一行:
> binom.test(2, 7, 0.5, alternative=c("two.sided"), conf.level = 0.95)
Exact binomial test
data: 2 and 7
number of successes = 2, number of trials = 7, p-value = 0.4531
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.03669257 0.70957914
sample estimates:
probability of success
0.2857143
但是,我没有成功将它应用于所有行。
类似的东西:
counts$pVal <- 2*sum(dbinom(0:counts$small, counts$Sum, 0.5))
#or,
counts_2ms04h$pVal <- binom.test(0:counts$small, counts$Sum, 0.5, alternative=c("two.sided"), conf.level = 0.99)
## I also used tapply
test <- function(x, n, p){binom.test(x, n, p, alternative="two-sided")}
mapply(test, counts$small, counts$Sum, 0.5)
Error in binom.test(x, n, p, alternative = "two-sided") :
'n' must be a positive integer >= 'x'
谢谢,
答案 0 :(得分:1)
怎么样:
bt <- function(a, b, p = 0.5) {binom.test(a, b, 0.5, alternative=
c("two.sided"), conf.level = 0.95)$p.value}
counts$pVal <- mapply(bt, counts$small, counts$Sum)
small Sum pVal
1 2 7 0.453125
2 3 6 1.000000
3 5 11 1.000000
答案 1 :(得分:0)
直接运行dbinom有什么问题。
resource "mongodbatlas_cluster" "test-cluster" {
project_id = mongodbatlas_project.test_db.id
name = "test-cluster"
cluster_type = "REPLICASET"
replication_specs {
num_shards = 1
regions_config {
region_name = var.atlas_region
electable_nodes = 1
priority = 7
read_only_nodes = 0
}
}
provider_backup_enabled = true
auto_scaling_disk_gb_enabled = true
mongo_db_major_version = "4.2"
//Provider Settings "block"
provider_name = "GCP"
disk_size_gb = 10
provider_instance_size_name = "M10"
}