import tensorflow as tf
import numpy as np
W = tf.Variable([0,3], dtype = tf.float32)
b = tf.Variable([-0.3], dtype = tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
loss = tf.reduce_sum(tf.square(linear_model - y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train, {x: x_train, y: y_train})
curr_W, curr_b, curr_loss = sess.run([W,b,loss], {x: [1,2,3,4], y: [0,-1,-2,-3]})
print("w: %s, b: %s, loss: %s", curr_W, curr_b, curr_loss)
错误:InvalidArgumentError(参见上面的回溯):不兼容的形状:[2]与[4] [[Node:mul = Mul [T = DT_FLOAT,_device =" / job:localhost / replica:0 / task:0 / cpu:0"](Variable / read,_recv_Placeholder_0)]]
答案 0 :(得分:2)
我想问题就在这里 而不是在W中使用float32
W = tf.Variable([0,3], dtype = tf.float32)
b = tf.Variable([-0.3], dtype = tf.float32)
它将是
W = tf.Variable([0.3], dtype = tf.float32)
b = tf.Variable([-0.3], dtype = tf.float32)