以下数据基于货车的GPS坐标,点火开关是否以及货车在给定时间距目标位置的距离。我想确定一辆货车是在一个位置(或<300)处,是否关闭点火装置,以及两种情况是否都是真的,停留的持续时间。
在下面的示例中,我将行1-4视为“分组”在一起,因为它们是距离<300的连续行。第5行是“分组”的,因为它是> 300,而第6-8行是“分组”在一起的,因为它们是距离<300的连续行。
因此,由于在行1-4中关闭点火,我想计算持续时间(因为货车在该位置“停止”一段给定的时间)。但是,其他两组(第5行和第6-8行)不应该进行持续时间计算,因为在这些分组中点火从未关闭。df
AcctID On_Off Distance Timestamp
123 On 230 12:00
123 On 30 12:02
123 Off 29 12:05
123 Off 35 12:10
123 On 3000 12:13
123 On 100 12:20
123 On 95 12:22
123 On 240 12:28
我能够对距离是否小于300(Within_Distance
)进行分类,但是确定分组中至少有一行的点火是否关闭让我感到难过。以下是最终数据框的样子:
df['Within_Distance'] = np.where(df['Distance']<300, "Yes", "No")
df
AcctID On_Off Distance Timestamp Within_Distance Was_Off Within_Distance_and_Was_Off
123 On 230 12:20 Yes Yes Yes
123 On 30 12:02 Yes Yes Yes
123 Off 29 12:05 Yes Yes Yes
123 Off 35 12:10 Yes Yes Yes
123 On 3000 12:13 No No No
123 On 100 12:20 Yes No No
123 On 95 12:22 Yes No No
123 On 240 12:28 Yes No No
提前致谢!
答案 0 :(得分:3)
试试吧:
df['Within_Distance'] = np.where(df['Distance']<300, "Yes", "No")
df['Was_Off'] = df.groupby((df.Distance > 300).diff().fillna(0).cumsum())['On_Off'].transform(lambda x: 'Yes' if (x == 'Off').any() else 'No')
df['Within_Distinace_and_Was_Off'] = np.where((df['Within_Distance'] == 'Yes') & (df['Was_Off'] == 'Yes'),'Yes','No')
输出:
AcctID On_Off Distance Timestamp Within_Distance Was_Off \
0 123 On 230 12:00 Yes Yes
1 123 On 30 12:02 Yes Yes
2 123 Off 29 12:05 Yes Yes
3 123 Off 35 12:10 Yes Yes
4 123 On 3000 12:13 No No
5 123 On 100 12:20 Yes No
6 123 On 95 12:22 Yes No
7 123 On 240 12:28 Yes No
Within_Distinace_and_Was_Off
0 Yes
1 Yes
2 Yes
3 Yes
4 No
5 No
6 No
7 No
答案 1 :(得分:1)
首先,设置一个布尔字段以使用
df['Off'] = df['On_Off'] == 'Off'
然后构建一个标识groupby
连续行的字段,如here
(df['Within_Distance'] != df['Within_Distance'].shift()).cumsum()
并使用.any
来识别groupby中任何行的布尔值为true:
df['Was_Off'] = df.groupby((df['Within_Distance'] != df['Within_Distance'].shift()).cumsum())['Off'].transform(any)
Out[31]:
AcctID On_Off Distance Timestamp Within_Distance Off Was_Off
0 123 On 230 12:00 Yes False True
1 123 On 30 12:02 Yes False True
2 123 Off 29 12:05 Yes True True
3 123 Off 35 12:10 Yes True True
4 123 On 3000 12:13 No False False
5 123 On 100 12:20 Yes False False
6 123 On 95 12:22 Yes False False
7 123 On 240 12:28 Yes False False