从卷积层可视化特征时超出范围索引错误

时间:2017-06-19 16:31:53

标签: indexing deep-learning visualization

我是弗朗索瓦·查莱特(Francois Chollet)如何看待世界的博客文章,用于可视化由犯罪现场学习的特征。这是我的代码:

from __future__ import print_function
from scipy.misc import imsave
import numpy as np
import time
from keras import applications
from keras import backend as K
K.set_image_dim_ordering('tf')
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

# dimensions of the generated pictures for each filter.
img_width = 128
img_height = 128

# the name of the layer we want to visualize
# (see model definition at keras/applications/vgg16.py)
layer_name = 'block5_conv1'

# util function to convert a tensor into a valid image
def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + 1e-5)
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)
# build the VGG16 network with ImageNet weights
model = applications.VGG16(include_top=False, weights='imagenet', input_shape=(128,128,3))
print('Model loaded.')
model.summary()
# this is the placeholder for the input images
input_img = model.input
# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])

def normalize(x):
    # utility function to normalize a tensor by its L2 norm
    return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)
kept_filters = []

for filter_index in range(0, 20):
    # we only scan through the first 50 filters,
    # but there are actually 512 of them
    print('Processing filter %d' % filter_index)
    start_time = time.time()
    # we build a loss function that maximizes the activation
    # of the nth filter of the layer considered
    layer_output = layer_dict[layer_name].output
    loss = K.mean(layer_output[:, :, :, filter_index])
    # we compute the gradient of the input picture wrt this loss
    grads = K.gradients(loss, input_img)[0]
    # normalization trick: we normalize the gradient
    grads = normalize(grads)
    # this function returns the loss and grads given the input picture
    iterate = K.function([input_img], [loss, grads])
    # step size for gradient ascent
    step = 1.
    # we start from a gray image with some random noise
    img = load_img('para1.jpg')  # this is a PIL image
    x = img_to_array(img)
    x = x.reshape((1,) + x.shape)
    input_img_data = x
    input_img_data = (input_img_data - 0.5) * 20 + 128
    # we run gradient ascent for 20 steps
    for i in range(20):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step
        print('Current loss value:', loss_value)
        if loss_value <= 0.:
            # some filters get stuck to 0, we can skip them
            break
    # decode the resulting input image
    if loss_value > 0:
        img = deprocess_image(input_img_data[0])
        kept_filters.append((img, loss_value))
    end_time = time.time()
    print('Filter %d processed in %ds' % (filter_index, end_time - start_time))
# we will stich the best 64 filters on a 8 x 8 grid.
n = 8
# the filters that have the highest loss are assumed to be better-looking.
# we will only keep the top 64 filters.
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]
# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
margin = 5
width = n * img_width + (n-1) * margin
height = n * img_height + (n-1) * margin
stitched_filters = np.zeros((width, height, 3))
# fill the picture with our saved filters
for i in range(n):
    for j in range(n):
        img, loss = kept_filters[i * n + j]
        stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
                         (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img
# save the result to disk
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)

当我运行代码时,我遇到了错误:

    File "C:/Users/rajaramans2/codes/untitled8.py", line 94, in <module>
        img, loss = kept_filters[i * n + j]

    IndexError: list index out of range

请帮助修改。我正在使用尺寸为(128,128)的RGB图像,并试图在vgg16网络的第5块可视化卷积层1。

1 个答案:

答案 0 :(得分:0)

在第76行中,keep_filters附加在第42行的循环中。因此,keep_filters的长度最多为20.但是在第94行中,您希望在keep_filters中访问8 * 8 = 64个元素,这些元素不在范围。