这是代码,我只在y_pred = classifier.predict(X_test)
的最后一行收到错误。我得到的错误是AttributeError: 'KerasClassifier' object has no attribute 'model'
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import datasets
from sklearn import preprocessing
from keras.utils import np_utils
# Importing the dataset
dataset = pd.read_csv('Data1.csv',encoding = "cp1252")
X = dataset.iloc[:, 1:-1].values
y = dataset.iloc[:, -1].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_0 = LabelEncoder()
X[:, 0] = labelencoder_X_0.fit_transform(X[:, 0])
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
labelencoder_X_3 = LabelEncoder()
X[:, 3] = labelencoder_X_3.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Creating the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
def build_classifier():
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 10))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 2)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 1, n_jobs=1)
mean = accuracies.mean()
variance = accuracies.std()
# Predicting the Test set results
import sklearn
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# Predicting new observations
test = pd.read_csv('test.csv',encoding = "cp1252")
test = test.iloc[:, 1:].values
test[:, 0] = labelencoder_X_0.transform(test[:, 0])
test[:, 1] = labelencoder_X_1.transform(test[:, 1])
test[:, 2] = labelencoder_X_2.transform(test[:, 2])
test[:, 3] = labelencoder_X_3.transform(test[:, 3])
test = onehotencoder.transform(test).toarray()
test = test[:, 1:]
new_prediction = classifier.predict_classes(sc.transform(test))
new_prediction1 = (new_prediction > 0.5)
答案 0 :(得分:13)
因为你尚未安装classifier
。要使classifier
模型变量可用,您需要调用
classifier.fit(X_train, y_train)
虽然您已使用cross_val_score()
而不是classifier
,并且发现了准确性,但此处要注意的主要问题是cross_val_score
将克隆提供的模型并将其用于交叉 - 验证折叠。因此,您的原始估算工具classifier
未受影响且未经过培训。
您可以在我的其他answer here
中查看cross_val_score
的工作情况
所以把上面提到的行放在y_pred = classifier.predict(X_test)
行之上,你就完成了。希望这说清楚。
答案 1 :(得分:2)
您收到错误是因为您实际上没有从KerasClassifier
训练返回的模型,这是一个Scikit-learn Wrapper来使用Scikit-learn函数。
你可以做一个GridSearch(你可能知道,因为代码似乎来自Udemy ML / DL课程):
def build_classifier(optimizer):
classifier = Sequential()
classifier.add(Dense(units = 6, kernel_initializer = 'uniform',
activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform',
activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform',
activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss =
'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier)
parameters = {'batch_size': [25, 32],
'epochs': [100, 500],
'optimizer': ['adam', 'rmsprop']}
grid_search = GridSearchCV(estimator = classifier,
param_grid = parameters,
scoring = 'accuracy',
cv = 10)
grid_search = grid_search.fit(X_train, y_train)
如果您不需要Scikit-learn功能,我建议您避免使用包装器,只需使用以下代码构建模型:
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
…
然后训练:
model.fit( … )